BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

564 related articles for article (PubMed ID: 19527767)

  • 1. Importance of non-conserved distal carboxyl terminal amino acids in two peptidases belonging to the M1 family: Thermoplasma acidophilum Tricorn interacting factor F2 and Escherichia coli Peptidase N.
    Kumar A; Bhosale M; Reddy S; Srinivasan N; Nandi D
    Biochimie; 2009 Sep; 91(9):1145-55. PubMed ID: 19527767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of the tricorn interacting factor F3 from Thermoplasma acidophilum, a zinc aminopeptidase in three different conformations.
    Kyrieleis OJ; Goettig P; Kiefersauer R; Huber R; Brandstetter H
    J Mol Biol; 2005 Jun; 349(4):787-800. PubMed ID: 15893768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic activity of Peptidase N is required for adaptation of Escherichia coli to nutritional downshift and high temperature stress.
    Bhosale M; Kumar A; Das M; Bhaskarla C; Agarwal V; Nandi D
    Microbiol Res; 2013 Jan; 168(1):56-64. PubMed ID: 22766257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of two M17 family members in Escherichia coli, Peptidase A and Peptidase B.
    Bhosale M; Pande S; Kumar A; Kairamkonda S; Nandi D
    Biochem Biophys Res Commun; 2010 Apr; 395(1):76-81. PubMed ID: 20350528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and overexpression of a thermostable signal peptide peptidase (SppA) from Thermoplasma volcanium GSS1 in E. coli.
    Kocabiyik S; Demirok B
    Biotechnol J; 2009 Jul; 4(7):1055-65. PubMed ID: 19557795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of the tricorn-interacting aminopeptidase F1 with different ligands explain its catalytic mechanism.
    Goettig P; Groll M; Kim JS; Huber R; Brandstetter H
    EMBO J; 2002 Oct; 21(20):5343-52. PubMed ID: 12374735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanosensitive channel of Thermoplasma, the cell wall-less archaea: cloning and molecular characterization.
    Kloda A; Martinac B
    Cell Biochem Biophys; 2001; 34(3):321-47. PubMed ID: 11898860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of Amino Acids, Gln-119 and Tyr-376, in the S1 Pocket of Escherichia coli Peptidase N in Determining Substrate Specificity.
    Das M; Bhosale M; Wadhwa N; Ahmed SM; Bhaskarla C; Kumar A; Srinivasan N; Nandi D
    Protein Pept Lett; 2016; 23(6):548-61. PubMed ID: 26927617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of a putative lipoate protein ligase from Thermoplasma acidophilum and the mechanism of target selection for post-translational modification.
    McManus E; Luisi BF; Perham RN
    J Mol Biol; 2006 Feb; 356(3):625-37. PubMed ID: 16384580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A unique lipoylation system in the Archaea. Lipoylation in Thermoplasma acidophilum requires two proteins.
    Posner MG; Upadhyay A; Bagby S; Hough DW; Danson MJ
    FEBS J; 2009 Aug; 276(15):4012-22. PubMed ID: 19594830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational analysis of conserved AAA+ residues in the archaeal Lon protease from Thermoplasma acidophilum.
    Besche H; Tamura N; Tamura T; Zwickl P
    FEBS Lett; 2004 Sep; 574(1-3):161-6. PubMed ID: 15358558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of ftsZ and pyrF from the archaeon Thermoplasma acidophilum.
    Yaoi T; Laksanalamai P; Jiemjit A; Kagawa HK; Alton T; Trent JD
    Biochem Biophys Res Commun; 2000 Sep; 275(3):936-45. PubMed ID: 10973825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the tricorn protease reveals a protein disassembly line.
    Brandstetter H; Kim JS; Groll M; Huber R
    Nature; 2001 Nov; 414(6862):466-70. PubMed ID: 11719810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of the catalytic function of a putative 2-oxoacid dehydrogenase multienzyme complex in the thermophilic archaeon Thermoplasma acidophilum.
    Heath C; Jeffries AC; Hough DW; Danson MJ
    FEBS Lett; 2004 Nov; 577(3):523-7. PubMed ID: 15556640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered Thermoplasma acidophilum factor F3 mimics human aminopeptidase N (APN) as a target for anticancer drug development.
    Su J; Wang Q; Feng J; Zhang C; Zhu D; Wei T; Xu W; Gu L
    Bioorg Med Chem; 2011 May; 19(9):2991-6. PubMed ID: 21493078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermostability and thermoactivity of citrate synthases from the thermophilic and hyperthermophilic archaea, Thermoplasma acidophilum and Pyrococcus furiosus.
    Arnott MA; Michael RA; Thompson CR; Hough DW; Danson MJ
    J Mol Biol; 2000 Dec; 304(4):657-68. PubMed ID: 11099387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular structure of a novel membrane protease specific for a stomatin homolog from the hyperthermophilic archaeon Pyrococcus horikoshii.
    Yokoyama H; Matsui E; Akiba T; Harata K; Matsui I
    J Mol Biol; 2006 May; 358(4):1152-64. PubMed ID: 16574150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PepN, the major Suc-LLVY-AMC-hydrolyzing enzyme in Escherichia coli, displays functional similarity with downstream processing enzymes in Archaea and eukarya. Implications in cytosolic protein degradation.
    Chandu D; Kumar A; Nandi D
    J Biol Chem; 2003 Feb; 278(8):5548-56. PubMed ID: 12482750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of archaeal membrane lipids: digeranylgeranylglycerophospholipid reductase of the thermoacidophilic archaeon Thermoplasma acidophilum.
    Nishimura Y; Eguchi T
    J Biochem; 2006 Jun; 139(6):1073-81. PubMed ID: 16788058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure of Escherichia coli HypC.
    Wang L; Xia B; Jin C
    Biochem Biophys Res Commun; 2007 Sep; 361(3):665-9. PubMed ID: 17669368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.