These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 19528675)
1. Finite size effects on the gate leakage current in graphene nanoribbon field-effect transistors. Mao LF Nanotechnology; 2009 Jul; 20(27):275203. PubMed ID: 19528675 [TBL] [Abstract][Full Text] [Related]
2. Theoretical study of the source-drain current and gate leakage current to understand the graphene field-effect transistors. Yu C; Liu H; Ni W; Gao N; Zhao J; Zhang H Phys Chem Chem Phys; 2011 Feb; 13(8):3461-7. PubMed ID: 21240394 [TBL] [Abstract][Full Text] [Related]
3. Top-gated graphene field-effect transistors with high normalized transconductance and designable dirac point voltage. Xu H; Zhang Z; Xu H; Wang Z; Wang S; Peng LM ACS Nano; 2011 Jun; 5(6):5031-7. PubMed ID: 21528892 [TBL] [Abstract][Full Text] [Related]
4. Lateral graphene-hBCN heterostructures as a platform for fully two-dimensional transistors. Fiori G; Betti A; Bruzzone S; Iannaccone G ACS Nano; 2012 Mar; 6(3):2642-8. PubMed ID: 22372431 [TBL] [Abstract][Full Text] [Related]
5. n-Type reduced graphene oxide field-effect transistors (FETs) from photoactive metal oxides. Yoo H; Kim Y; Lee J; Lee H; Yoon Y; Kim G; Lee H Chemistry; 2012 Apr; 18(16):4923-9. PubMed ID: 22422712 [TBL] [Abstract][Full Text] [Related]
6. Large scale pattern graphene electrode for high performance in transparent organic single crystal field-effect transistors. Liu W; Jackson BL; Zhu J; Miao CQ; Chung CH; Park YJ; Sun K; Woo J; Xie YH ACS Nano; 2010 Jul; 4(7):3927-32. PubMed ID: 20536162 [TBL] [Abstract][Full Text] [Related]
7. Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors. Lin MW; Ling C; Zhang Y; Yoon HJ; Cheng MM; Agapito LA; Kioussis N; Widjaja N; Zhou Z Nanotechnology; 2011 Jul; 22(26):265201. PubMed ID: 21576804 [TBL] [Abstract][Full Text] [Related]
8. Electro-oxidized epitaxial graphene channel field-effect transistors with single-walled carbon nanotube thin film gate electrode. Ramesh P; Itkis ME; Bekyarova E; Wang F; Niyogi S; Chi X; Berger C; de Heer W; Haddon RC J Am Chem Soc; 2010 Oct; 132(41):14429-36. PubMed ID: 20873843 [TBL] [Abstract][Full Text] [Related]
9. Effects of Energy Relaxation via Quantum Coupling Among Three-Dimensional Motion on the Tunneling Current of Graphene Field-Effect Transistors. Mao LF; Ning H; Li X Nanoscale Res Lett; 2015 Dec; 10(1):1039. PubMed ID: 26264688 [TBL] [Abstract][Full Text] [Related]
10. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications. Rahmani M; Ahmadi MT; Abadi HK; Saeidmanesh M; Akbari E; Ismail R Nanoscale Res Lett; 2013 Jan; 8(1):55. PubMed ID: 23363692 [TBL] [Abstract][Full Text] [Related]
12. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control. Oh YJ; Garcia AL; Petsev DN; Lopez GP; Brueck SR; Ivory CF; Han SM Lab Chip; 2009 Jun; 9(11):1601-8. PubMed ID: 19458869 [TBL] [Abstract][Full Text] [Related]
13. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Li X; Wang X; Zhang L; Lee S; Dai H Science; 2008 Feb; 319(5867):1229-32. PubMed ID: 18218865 [TBL] [Abstract][Full Text] [Related]
14. Quantum transport through a graphene nanoribbon-superconductor junction. Sun QF; Xie XC J Phys Condens Matter; 2009 Aug; 21(34):344204. PubMed ID: 21715779 [TBL] [Abstract][Full Text] [Related]
15. Chemical and biological sensing applications based on graphene field-effect transistors. Ohno Y; Maehashi K; Matsumoto K Biosens Bioelectron; 2010 Dec; 26(4):1727-30. PubMed ID: 20800470 [TBL] [Abstract][Full Text] [Related]
16. Improved performance of graphene transistors by strain engineering. Nguyen VH; Nguyen HV; Dollfus P Nanotechnology; 2014 Apr; 25(16):165201. PubMed ID: 24670679 [TBL] [Abstract][Full Text] [Related]
17. Electrical and noise characteristics of graphene field-effect transistors: ambient effects, noise sources and physical mechanisms. Rumyantsev S; Liu G; Stillman W; Shur M; Balandin AA J Phys Condens Matter; 2010 Oct; 22(39):395302. PubMed ID: 21403224 [TBL] [Abstract][Full Text] [Related]
18. Implantation and growth of dendritic gold nanostructures on graphene derivatives: electrical property tailoring and Raman enhancement. Jasuja K; Berry V ACS Nano; 2009 Aug; 3(8):2358-66. PubMed ID: 19702325 [TBL] [Abstract][Full Text] [Related]
19. High mobility flexible graphene field-effect transistors with self-healing gate dielectrics. Lu CC; Lin YC; Yeh CH; Huang JC; Chiu PW ACS Nano; 2012 May; 6(5):4469-74. PubMed ID: 22501029 [TBL] [Abstract][Full Text] [Related]