These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 19529103)
1. Design of photonic band gap fibers with suppressed higher-order modes: towards the development of effectively single mode large hollow-core fiber platforms. Saitoh K; Florous NJ; Murao T; Koshiba M Opt Express; 2006 Aug; 14(16):7342-52. PubMed ID: 19529103 [TBL] [Abstract][Full Text] [Related]
2. Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers. Skorobogatiy M; Saitoh K; Koshiba M Opt Express; 2008 Sep; 16(19):14945-53. PubMed ID: 18795031 [TBL] [Abstract][Full Text] [Related]
4. Design of low-loss and highly birefringent hollow-core photonic crystal fiber. Roberts PJ; Williams DP; Sabert H; Mangan BJ; Bird DM; Birks TA; Knight JC; Russell PS Opt Express; 2006 Aug; 14(16):7329-41. PubMed ID: 19529102 [TBL] [Abstract][Full Text] [Related]
5. Cladding defects in hollow core fibers for surface mode suppression and improved birefringence. Michieletto M; Lyngsø JK; Lægsgaard J; Bang O Opt Express; 2014 Sep; 22(19):23324-32. PubMed ID: 25321801 [TBL] [Abstract][Full Text] [Related]
6. Mode area scaling with multi-trench rod-type fibers. Jain D; Baskiotis C; Sahu JK Opt Express; 2013 Jan; 21(2):1448-55. PubMed ID: 23389126 [TBL] [Abstract][Full Text] [Related]
7. Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers. Murao T; Saitoh K; Koshiba M Opt Express; 2009 Apr; 17(9):7615-29. PubMed ID: 19399140 [TBL] [Abstract][Full Text] [Related]
8. Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding. Zhang Z; Shi Y; Bian B; Lu J Opt Express; 2008 Feb; 16(3):1915-22. PubMed ID: 18542270 [TBL] [Abstract][Full Text] [Related]
9. Two-mode multiplexing at 2 × 10.7 Gbps over a 7-cell hollow-core photonic bandgap fiber. Xu J; Peucheret C; Lyngsø JK; Leick L Opt Express; 2012 May; 20(11):12449-56. PubMed ID: 22714232 [TBL] [Abstract][Full Text] [Related]
10. Preparation and transmission of low-loss azimuthally polarized pure single mode in multimode photonic band gap fibers. Shemuly D; Stolyarov AM; Ruff ZM; Wei L; Fink Y; Shapira O Opt Express; 2012 Mar; 20(6):6029-35. PubMed ID: 22418480 [TBL] [Abstract][Full Text] [Related]
11. Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding. Murao T; Saitoh K; Koshiba M Opt Express; 2011 Jan; 19(3):1713-27. PubMed ID: 21368985 [TBL] [Abstract][Full Text] [Related]
18. Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index. Chen C; Laronche A; Bouwmans G; Bigot L; Quiquempois Y; Albert J Opt Express; 2008 Jun; 16(13):9645-53. PubMed ID: 18575532 [TBL] [Abstract][Full Text] [Related]
19. High average power, high energy 1.55 μm ultra-short pulse laser beam delivery using large mode area hollow core photonic band-gap fiber. Peng X; Mielke M; Booth T Opt Express; 2011 Jan; 19(2):923-32. PubMed ID: 21263632 [TBL] [Abstract][Full Text] [Related]
20. Extending mode areas of single-mode all-solid photonic bandgap fibers. Gu G; Kong F; Hawkins TW; Jones M; Dong L Opt Express; 2015 Apr; 23(7):9147-56. PubMed ID: 25968749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]