These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19529291)

  • 1. Dynamic compensation of chromatic aberration in a programmable diffractive lens.
    Millán MS; Otón J; Pérez-Cabré E
    Opt Express; 2006 Oct; 14(20):9103-12. PubMed ID: 19529291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatic compensation of programmable Fresnel lenses.
    Millán MS; Otón J; Pérez-Cabré E
    Opt Express; 2006 Jun; 14(13):6226-42. PubMed ID: 19516795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable apodizer to compensate chromatic aberration effects using a liquid crystal spatial light modulator.
    Márquez A; Iemmi C; Campos J; Escalera J; Yzuel M
    Opt Express; 2005 Feb; 13(3):716-30. PubMed ID: 19494932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatic aberration and polychromatic image quality with diffractive multifocal intraocular lenses.
    Ravikumar S; Bradley A; Thibos LN
    J Cataract Refract Surg; 2014 Jul; 40(7):1192-204. PubMed ID: 24957438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital infrared chromatic aberration correction algorithm for a membrane diffractive lens based on coherent imaging.
    Wu J; Li D; Cui A; Gao J; Zhou K; Liu B
    Appl Opt; 2022 Dec; 61(34):10080-10085. PubMed ID: 36606767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatic aberration control with liquid crystal spatial phase modulators.
    Martinez JL; Fernandez EJ; Prieto PM; Artal P
    Opt Express; 2017 May; 25(9):9793-9801. PubMed ID: 28468359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses.
    Vinas M; Gonzalez-Ramos A; Dorronsoro C; Akondi V; Garzon N; Poyales F; Marcos S
    J Refract Surg; 2017 Nov; 33(11):736-742. PubMed ID: 29117412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth of focus increase by multiplexing programmable diffractive lenses.
    Iemmi C; Campos J; Escalera JC; López-Coronado O; Gimeno R; Yzuel MJ
    Opt Express; 2006 Oct; 14(22):10207-19. PubMed ID: 19529416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polychromatic Image Performance of Diffractive Bifocal Intraocular Lenses: Longitudinal Chromatic Aberration and Energy Efficiency.
    Millán MS; Vega F; Ríos-López I
    Invest Ophthalmol Vis Sci; 2016 Apr; 57(4):2021-8. PubMed ID: 27100158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aberration-free aspherical in-plane tunable liquid lenses by regulating local curvatures.
    Chen Q; Tong X; Zhu Y; Tsoi CC; Jia Y; Li Z; Zhang X
    Lab Chip; 2020 Mar; 20(5):995-1001. PubMed ID: 32025666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatic aberration correction in bi-focal augmented reality display by the multi-layer Pancharatnam-Berry phase lens.
    Ma Y; Zhang W; Liu Y; Tian T; Luo D
    Opt Express; 2022 May; 30(11):18772-18780. PubMed ID: 36221671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of macro-filter-lens with simultaneous chromatic and geometric aberration correction.
    Prasad DK; Brown MS
    Appl Opt; 2014 Jan; 53(1):32-7. PubMed ID: 24513986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active optics null test system based on a liquid crystal programmable spatial light modulator.
    Ares M; Royo S; Sergievskaya I; Riu J
    Appl Opt; 2010 Nov; 49(32):6201-6. PubMed ID: 21068848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic chromatic aberration pre-compensation scheme for ultrashort petawatt laser systems.
    Cui Z; Kang J; Guo A; Zhu H; Yang Q; Zhu P; Sun M; Gao Q; Liu D; Ouyang X; Zhang Z; Wei H; Liang X; Zhang C; Yang S; Zhang D; Xie X; Zhu J
    Opt Express; 2019 Jun; 27(12):16812-16822. PubMed ID: 31252901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavelength-compensated color Fourier diffractive optical elements using a ferroelectric liquid crystal on silicon display and a color-filter wheel.
    Martínez JL; Martínez-García A; Moreno I
    Appl Opt; 2009 Feb; 48(5):911-8. PubMed ID: 19209203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reverse chromatic aberration and its numerical optimization in a metamaterial lens.
    Capecchi WJ; Behdad N; Volpe FA
    Opt Express; 2012 Apr; 20(8):8761-9. PubMed ID: 22513587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, Fabrication and Analysis of a Hybrid-Order Monolithic Imaging Diffractive Lens on a Germanium Substrate.
    Zheng Y; Lei B; Fan B; Du J; Bian J; Wang L; Liu Y; Guan S; Liu D; Luo Q; Yang H; Zhang H; Hu C
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometric-phase-based axicon lens for computational achromatic imaging.
    Ren J; Zhou Y; Shao Z; Zhu C; Fan F; Tang D
    Opt Lett; 2023 Jul; 48(14):3737-3740. PubMed ID: 37450738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatic compensation in the near-field region: shape and size tunability.
    Mínguez-Vega G; Fernández-Alonso M; Tajahuerce E; Lancis J; Jaroszewicz Z; Andrés P
    Appl Opt; 2005 Nov; 44(32):6933-9. PubMed ID: 16294969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatic aberration of light focusing in hyperbolic anisotropic metamaterial made of metallic slit array.
    Guo K; Liu J; Zhang Y; Liu S
    Opt Express; 2012 Dec; 20(27):28586-93. PubMed ID: 23263096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.