These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 19529291)

  • 21. Effects of intraocular lenses with different diopters on chromatic aberrations in human eye models.
    Song H; Yuan X; Tang X
    BMC Ophthalmol; 2016 Jan; 16():9. PubMed ID: 26754111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adjustable hybrid diffractive/refractive achromatic lens.
    Valley P; Savidis N; Schwiegerling J; Dodge MR; Peyman G; Peyghambarian N
    Opt Express; 2011 Apr; 19(8):7468-79. PubMed ID: 21503055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromatic Aberration Correction in Harmonic Diffractive Lenses Based on Compressed Sensing Encoding Imaging.
    Chan J; Zhao X; Zhong S; Zhang T; Fan B
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing.
    Wang P; Mohammad N; Menon R
    Sci Rep; 2016 Feb; 6():21545. PubMed ID: 26868264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Broadband alignment scheme for a stepper system using combinations of diffractive and refractive lenses.
    Yoshitake Y; Morris GM
    Appl Opt; 1994 Dec; 33(34):7971-9. PubMed ID: 20963012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Camera processing with chromatic aberration.
    Korneliussen JT; Hirakawa K
    IEEE Trans Image Process; 2014 Oct; 23(10):4539-52. PubMed ID: 25163060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. White-light Fourier transformer with low chromatic aberration.
    Andrés P; Lancis J; Furlan WD
    Appl Opt; 1992 Aug; 31(23):4682-7. PubMed ID: 20725478
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extending the range of vision using diffractive intraocular lens technology.
    Weeber HA; Meijer ST; Piers PA
    J Cataract Refract Surg; 2015 Dec; 41(12):2746-54. PubMed ID: 26796456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromatic analysis of harmonic Fresnel lenses by FDTD and angular spectrum methods.
    Yang J; Twardowski P; Gérard P; Yu W; Fontaine J
    Appl Opt; 2018 Jul; 57(19):5281-5287. PubMed ID: 30117815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromatic aberration short-wave infrared spectroscopy: nanoparticle spectra without a spectrometer.
    Streit JK; Bachilo SM; Weisman RB
    Anal Chem; 2013 Feb; 85(3):1337-41. PubMed ID: 23286305
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative Phase Microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography.
    Ferraro P; Miccio L; Grilli S; Paturzo M; De Nicola S; Finizio A; Osellame R; Laporta P
    Opt Express; 2007 Oct; 15(22):14591-600. PubMed ID: 19550739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectral switches of partially coherent light focused by a filter-lens system with chromatic aberration.
    Pu J; Cai C; Nemoto S
    J Opt Soc Am A Opt Image Sci Vis; 2004 Jun; 21(6):994-9. PubMed ID: 15191180
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An imaging spectrometer employing tunable hyperchromatic microlenses.
    Cu-Nguyen PH; Grewe A; Feßer P; Seifert A; Sinzinger S; Zappe H
    Light Sci Appl; 2016 Apr; 5(4):e16058. PubMed ID: 30167156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three dimensional analysis of chromatic aberration in diffractive elements with extended depth of focus.
    Mas D; Espinosa J; Perez J; Illueca C
    Opt Express; 2007 Dec; 15(26):17842-54. PubMed ID: 19551079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM).
    Katz B; Rosen J; Kelner R; Brooker G
    Opt Express; 2012 Apr; 20(8):9109-21. PubMed ID: 22513622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of diffractive lenses operating at several wavelengths.
    Doskolovich LL; Skidanov RV; Bezus EA; Ganchevskaya SV; Bykov DA; Kazanskiy NL
    Opt Express; 2020 Apr; 28(8):11705-11720. PubMed ID: 32403676
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compensation for longitudinal chromatic aberration in the eye of the firefly squid, Watasenia scintillans.
    Kröger RH; Gislén A
    Vision Res; 2004; 44(18):2129-34. PubMed ID: 15183679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation.
    Yu H; Zhou G; Leung HM; Chau FS
    Opt Express; 2010 May; 18(10):9945-54. PubMed ID: 20588848
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A wavelength tunable wavefront sensor for the human eye.
    Manzanera S; Canovas C; Prieto PM; Artal P
    Opt Express; 2008 May; 16(11):7748-55. PubMed ID: 18545485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo longitudinal chromatic aberration of pseudophakic eyes.
    Siedlecki D; Jóźwik A; Zając M; Hill-Bator A; Turno-Kręcicka A
    Optom Vis Sci; 2014 Feb; 91(2):240-6. PubMed ID: 24270638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.