These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19529482)

  • 1. Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material.
    Li J; Jia B; Zhou G; Gu M
    Opt Express; 2006 Oct; 14(22):10740-5. PubMed ID: 19529482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties.
    Serbin J; Ovsianikov A; Chichkov B
    Opt Express; 2004 Oct; 12(21):5221-8. PubMed ID: 19484080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering stop gaps of inorganic-organic polymeric 3D woodpile photonic crystals with post-thermal treatment.
    Li J; Jia B; Gu M
    Opt Express; 2008 Nov; 16(24):20073-80. PubMed ID: 19030093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization.
    Serbin J; Gu M
    Opt Express; 2006 Apr; 14(8):3563-8. PubMed ID: 19516503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum dot based 3D printed woodpile photonic crystals tuned for the visible.
    Sakellari I; Kabouraki E; Karanikolopoulos D; Droulias S; Farsari M; Loukakos P; Vamvakaki M; Gray D
    Nanoscale Adv; 2019 Sep; 1(9):3413-3423. PubMed ID: 36133530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of photonic band gaps in woodpile three-dimensional terahertz photonic crystals.
    Liu H; Yao J; Xu D; Wang P
    Opt Express; 2007 Jan; 15(2):695-703. PubMed ID: 19532292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local observation of modes from three-dimensional woodpile photonic crystals with near-field microspectroscopy under supercontinuum illumination.
    Jia B; Norton AH; Li J; Rahmani A; Asatryan AA; Botten LC; Gu M
    Opt Lett; 2008 May; 33(10):1093-5. PubMed ID: 18483523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct laser writing of three-dimensional photonic crystal lattices within a PbS quantum-dot-doped polymer material.
    Ventura MJ; Bullen C; Gu M
    Opt Express; 2007 Feb; 15(4):1817-22. PubMed ID: 19532420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon-based photonic crystals fabricated using proton beam writing combined with electrochemical etching method.
    Dang Z; Breese MB; Recio-Sánchez G; Azimi S; Song J; Liang H; Banas A; Torres-Costa V; Martín-Palma RJ
    Nanoscale Res Lett; 2012 Jul; 7(1):416. PubMed ID: 22824206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.
    Marichy C; Muller N; Froufe-Pérez LS; Scheffold F
    Sci Rep; 2016 Feb; 6():21818. PubMed ID: 26911540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications.
    Deubel M; von Freymann G; Wegener M; Pereira S; Busch K; Soukoulis CM
    Nat Mater; 2004 Jul; 3(7):444-7. PubMed ID: 15195083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental probe of a complete 3D photonic band gap.
    Adhikary M; Uppu R; Harteveld CAM; Grishina DA; Vos WL
    Opt Express; 2020 Feb; 28(3):2683-2698. PubMed ID: 32121951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicolor patterning using holographic woodpile photonic crystals at visible wavelengths.
    Park SG; Yang SM
    Nanoscale; 2013 May; 5(10):4110-3. PubMed ID: 23538506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques.
    Lin Y; Rivera D; Chen KP
    Opt Express; 2006 Jan; 14(2):887-92. PubMed ID: 19503408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of photonic band gaps in woodpile crystals.
    Gralak B; de Dood M; Tayeb G; Enoch S; Maystre D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066601. PubMed ID: 16241362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals.
    Chanda D; Abolghasemi LE; Haque M; Ng ML; Herman PR
    Opt Express; 2008 Sep; 16(20):15402-14. PubMed ID: 18825176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of light emission by 3D photonic crystals.
    Ogawa S; Imada M; Yoshimoto S; Okano M; Noda S
    Science; 2004 Jul; 305(5681):227-9. PubMed ID: 15178750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of three-dimensional photonic crystals with multilayer photolithography.
    Yao P; Schneider G; Prather D; Wetzel E; O'Brien D
    Opt Express; 2005 Apr; 13(7):2370-6. PubMed ID: 19495127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-contrast infrared polymer photonic crystals fabricated by direct laser writing.
    Li Y; Fullager DB; Park S; Childers D; Fesperman R; Boreman G; Hofmann T
    Opt Lett; 2018 Oct; 43(19):4711-4714. PubMed ID: 30272721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations.
    Chutinan A; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026605. PubMed ID: 15783439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.