These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19529543)

  • 1. Fast focus field calculations.
    Leutenegger M; Rao R; Leitgeb RA; Lasser T
    Opt Express; 2006 Nov; 14(23):11277-91. PubMed ID: 19529543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast calculation of tightly focused random electromagnetic beams: controlling the focal field by spatial coherence.
    Tong R; Dong Z; Chen Y; Wang F; Cai Y; Setälä T
    Opt Express; 2020 Mar; 28(7):9713-9727. PubMed ID: 32225573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast vectorial calculation of the volumetric focused field distribution by using a three-dimensional Fourier transform.
    Lin J; Rodríguez-Herrera OG; Kenny F; Lara D; Dainty JC
    Opt Express; 2012 Jan; 20(2):1060-9. PubMed ID: 22274452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast nonparaxial scalar focal field calculations.
    Hillenbrand M; Hoffmann A; Kelly DP; Sinzinger S
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jun; 31(6):1206-14. PubMed ID: 24977358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focus engineering based on analytical formulae for tightly focused polarized beams with arbitrary geometric configurations of linear polarization.
    Man Z; Fu S; Wei G
    J Opt Soc Am A Opt Image Sci Vis; 2017 Aug; 34(8):1384-1391. PubMed ID: 29036105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical solution of nonparaxial scalar diffraction integrals for focused fields.
    Hillenbrand M; Kelly DP; Sinzinger S
    J Opt Soc Am A Opt Image Sci Vis; 2014 Aug; 31(8):1832-41. PubMed ID: 25121540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffraction in a stratified region of a high numerical aperture Fresnel zone plate: a simple and rigorous integral representation.
    Zhang Y; Huang X; Zhang D; An H; Dai Y
    Opt Express; 2015 Mar; 23(6):8051-60. PubMed ID: 25837143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum.
    Chen J; Wan C; Kong L; Zhan Q
    Opt Express; 2017 Apr; 25(8):8966-8974. PubMed ID: 28437969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility study of the application of radially polarized illumination to solid immersion lens-based near-field optics.
    Yoon YJ; Kim WC; Park NC; Park KS; Park YP
    Opt Lett; 2009 Jul; 34(13):1961-3. PubMed ID: 19571966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focusing of partially coherent Bessel-Gaussian beams through a high-numerical-aperture objective.
    Zhang Z; Pu J; Wang X
    Opt Lett; 2008 Jan; 33(1):49-51. PubMed ID: 18157254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the fast-Fourier-transform-based volume integral equation method to model volume diffraction in shift-multiplexed holographic data storage.
    Gombköto B; Koppa P; Maák P; Lorincz E
    J Opt Soc Am A Opt Image Sci Vis; 2006 Nov; 23(11):2954-60. PubMed ID: 17047723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eigenfunction expansion of the electric fields in the focal region of a high numerical aperture focusing system.
    Sherif SS; Foreman MR; Török P
    Opt Express; 2008 Mar; 16(5):3397-407. PubMed ID: 18542431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct calculation of a three-dimensional diffracted field.
    Lin J; Yuan XC; Kou SS; Sheppard CJ; Rodríguez-Herrera OG; Dainty JC
    Opt Lett; 2011 Apr; 36(8):1341-3. PubMed ID: 21499350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffraction-limited near-spherical focal spot with controllable arbitrary polarization using single objective lens.
    Wan C; Yu Y; Zhan Q
    Opt Express; 2018 Oct; 26(21):27109-27117. PubMed ID: 30469785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high numerical aperture parabolic mirror as imaging device for confocal microscopy.
    Lieb M; Meixner A
    Opt Express; 2001 Mar; 8(7):458-74. PubMed ID: 19417842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution.
    Debus C; Lieb MA; Drechsler A; Meixner AJ
    J Microsc; 2003 Jun; 210(Pt 3):203-8. PubMed ID: 12787085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the focused laser spots generated by various polarized laser beam conditions.
    Fu YH; Ho FH; Lin WC; Liu WC; Tsai DP
    J Microsc; 2003 Jun; 210(Pt 3):225-8. PubMed ID: 12787089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical inversion of the focusing of high-numerical-aperture aplanatic systems.
    Borne J; Panneton D; Piché M; Thibault S
    J Opt Soc Am A Opt Image Sci Vis; 2019 Oct; 36(10):1642-1647. PubMed ID: 31674428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vectorial self-diffraction effect in optically Kerr medium.
    Gu B; Ye F; Lou K; Li Y; Chen J; Wang HT
    Opt Express; 2012 Jan; 20(1):149-57. PubMed ID: 22274338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Realistic modeling of ion cloud motion in a Fourier transform ion cyclotron resonance cell by use of a particle-in-cell approach.
    Nikolaev EN; Heeren RM; Popov AM; Pozdneev AV; Chingin KS
    Rapid Commun Mass Spectrom; 2007; 21(22):3527-46. PubMed ID: 17944004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.