BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19529620)

  • 1. Diffraction-limited performance of flat-substrate reflective imaging gratings patterned by DUV photolithography.
    Greiner CM; Iazikov D; Mossberg TW
    Opt Express; 2006 Dec; 14(25):11952-7. PubMed ID: 19529620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulse compression grating fabrication by diffractive proximity photolithography.
    Stuerzebecher L; Fuchs F; Harzendorf T; Zeitner UD
    Opt Lett; 2014 Feb; 39(4):1042-5. PubMed ID: 24562273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing interferences of DUV lithography on SOI substrates for the rapid fabrication of sub-wavelength features.
    Karker O; Bange R; Bano E; Stambouli V
    Nanotechnology; 2021 Mar; 32(23):. PubMed ID: 33545695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Wavelength-Selective Optical and Electron-Beam Lithography of Functional Inorganic Nanomaterials.
    Wang Y; Pan JA; Wu H; Talapin DV
    ACS Nano; 2019 Dec; 13(12):13917-13931. PubMed ID: 31609104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of line-shaped embossing structure by holographic lithography and its application to electronic device.
    Choi HG; Yagati AK; Kim KS; Jung GY; Lee SB; Choi JW; Oh BK
    J Nanosci Nanotechnol; 2008 Oct; 8(10):4945-50. PubMed ID: 19198368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process.
    Wang X; Shi W; Yun H; Grist S; Jaeger NA; Chrostowski L
    Opt Express; 2012 Jul; 20(14):15547-58. PubMed ID: 22772250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Holographic fabrication of large-constant concave gratings for wide-range flat-field spectrometers with the addition of a concave lens.
    Zhou Q; Li X; Ni K; Tian R; Pang J
    Opt Express; 2016 Jan; 24(2):732-8. PubMed ID: 26832458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-area rainbow holographic diffraction gratings on a curved surface using transferred photopolymer films.
    Lu WG; Xiao R; Liu J; Wang L; Zhong H; Wang Y
    Opt Lett; 2018 Feb; 43(4):675-678. PubMed ID: 29444049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and experimental investigation of highly efficient resonance-domain diffraction gratings in the visible spectral region.
    Barlev O; Golub MA; Friesem AA; Nathan M
    Appl Opt; 2012 Dec; 51(34):8074-80. PubMed ID: 23207376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production and evaluation of silicon immersion gratings for infrared astronomy.
    Marsh JP; Mar DJ; Jaffe DT
    Appl Opt; 2007 Jun; 46(17):3400-16. PubMed ID: 17514298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emulation of deep-ultraviolet lithography using rapid-prototyping, electron-beam lithography for silicon photonics design.
    Hammood M; Lin S; Yun H; Luan E; Chrostowski L; Jaeger NAF
    Opt Lett; 2023 Feb; 48(3):582-585. PubMed ID: 36723536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallographically limited submicrometer gratings in (100) and (211) silicon.
    Sarathy J; Diaz DC; Campbell JC
    Opt Lett; 1995 May; 20(10):1216-8. PubMed ID: 19859477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional switchable blue phase gratings manufactured by nanosphere lithography.
    Wahle M; Brassat K; Ebel J; Bürger J; Lindner JKN; Kitzerow HS
    Opt Express; 2017 Sep; 25(19):22608-22619. PubMed ID: 29041568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of diffraction gratings by top-down and bottom-up approaches based on scanning probe lithography.
    Yang MS; Song C; Choi J; Jo JS; Choi JH; Moon BK; Noh H; Jang JW
    Nanoscale; 2019 Jan; 11(5):2326-2334. PubMed ID: 30663755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nearly amorphous Mo-N gratings for ultimate resolution in extreme ultraviolet interference lithography.
    Wang L; Kirk E; Wäckerlin C; Schneider CW; Hojeij M; Gobrecht J; Ekinci Y
    Nanotechnology; 2014 Jun; 25(23):235305. PubMed ID: 24850475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achromatic holographic configuration for 100-nm-period lithography.
    Yen A; Anderson EH; Ghanbari RA; Schattenburg ML; Smith HI
    Appl Opt; 1992 Aug; 31(22):4540-5. PubMed ID: 20725456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer.
    Jeong SH; Shimura D; Simoyama T; Seki M; Yokoyama N; Ohtsuka M; Koshino K; Horikawa T; Tanaka Y; Morito K
    Opt Express; 2013 Dec; 21(25):30163-74. PubMed ID: 24514595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stand-alone diamond binary phase transmission gratings for the EUV band.
    Braig C; Käsebier T; Kley EB; Tünnermann A
    Opt Express; 2011 Jul; 19(15):14008-17. PubMed ID: 21934762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient perfectly vertical grating coupler for multi-core fibers fabricated with 193  nm DUV lithography.
    Tong Y; Zhou W; Tsang HK
    Opt Lett; 2018 Dec; 43(23):5709-5712. PubMed ID: 30499974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulsed transfer etching of PS-PDMS block copolymers self-assembled in 193 nm lithography stacks.
    Girardot C; Böhme S; Archambault S; Salaün M; Latu-Romain E; Cunge G; Joubert O; Zelsmann M
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16276-82. PubMed ID: 25111901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.