These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 19529633)

  • 1. Stimulated Brillouin scattering in single-mode As(2)S(3) and As(2)Se(3) chalcogenide fibers.
    Florea C; Bashkansky M; Dutton Z; Sanghera J; Pureza P; Aggarwal I
    Opt Express; 2006 Dec; 14(25):12063-70. PubMed ID: 19529633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle swarm optimization on threshold exponential gain of stimulated Brillouin scattering in single mode fibers.
    Al-Asadi HA; Al-Mansoori MH; Hitam S; Saripan MI; Mahdi MA
    Opt Express; 2011 Jan; 19(3):1842-53. PubMed ID: 21368999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber.
    Abedin KS
    Opt Express; 2005 Dec; 13(25):10266-71. PubMed ID: 19503241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient Brillouin slow and fast light using As(2)Se(3) chalcogenide fiber.
    Song KY; Abedin KS; Hotate K; González Herráez M; Thévenaz L
    Opt Express; 2006 Jun; 14(13):5860-5. PubMed ID: 19516755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulated Brillouin scattering in single-mode tellurite glass fiber.
    Abedin KS
    Opt Express; 2006 Nov; 14(24):11766-72. PubMed ID: 19529599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction and control of stimulated Brillouin scattering in polymer-coated chalcogenide optical microwires.
    Beugnot JC; Ahmad R; Rochette M; Laude V; Maillotte H; Sylvestre T
    Opt Lett; 2014 Feb; 39(3):482-5. PubMed ID: 24487845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly nonlinear yttrium-aluminosilicate optical fiber with a high intrinsic stimulated Brillouin scattering threshold.
    Tuggle M; Kucera C; Hawkins T; Sligh D; Runge AFJ; Peacock AC; Dragic P; Ballato J
    Opt Lett; 2017 Dec; 42(23):4849-4852. PubMed ID: 29216126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of stimulated Brillouin scattering in all-solid chalcogenide-tellurite photonic bandgap fiber.
    Cheng T; Liao M; Gao W; Duan Z; Suzuki T; Ohishi Y
    Opt Express; 2012 Dec; 20(27):28846-54. PubMed ID: 23263125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-loss compact chalcogenide microresonators for efficient stimulated Brillouin lasers.
    Li Y; Xia D; Cheng H; Luo L; Wang L; Zeng S; Yang S; Li L; Chen B; Zhang B; Li Z
    Opt Lett; 2024 Aug; 49(16):4529-4532. PubMed ID: 39146092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vector analysis of depleted stimulated Brillouin scattering amplification in standard single-mode fibers with nonzero birefringence.
    Shlomovits O; Tur M
    Opt Lett; 2013 Mar; 38(6):836-8. PubMed ID: 23503232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-chip stimulated Brillouin scattering.
    Pant R; Poulton CG; Choi DY; Mcfarlane H; Hile S; Li E; Thevenaz L; Luther-Davies B; Madden SJ; Eggleton BJ
    Opt Express; 2011 Apr; 19(9):8285-90. PubMed ID: 21643078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-threshold Brillouin laser at 2 μm based on suspended-core chalcogenide fiber.
    Hu K; Kabakova IV; Büttner TF; Lefrancois S; Hudson DD; He S; Eggleton BJ
    Opt Lett; 2014 Aug; 39(16):4651-4. PubMed ID: 25121840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Threshold for stimulated Brillouin scattering in optical fiber.
    Kovalev VI; Harrison RG
    Opt Express; 2007 Dec; 15(26):17625-30. PubMed ID: 19551057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulse width dependence of Brillouin frequency in single mode optical fibers.
    Cho SB; Kim YG; Heo JS; Lee JJ
    Opt Express; 2005 Nov; 13(23):9472-9. PubMed ID: 19503150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low distortion Brillouin slow light in optical fibers using AM modulation.
    Minardo A; Bernini R; Zeni L
    Opt Express; 2006 Jun; 14(13):5866-76. PubMed ID: 19516756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering.
    Smith RG
    Appl Opt; 1972 Nov; 11(11):2489-94. PubMed ID: 20119362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of pump recycling technique on stimulated Brillouin scattering threshold: a theoretical model.
    Al-Asadi HA; Al-Mansoori MH; Ajiya M; Hitam S; Saripan MI; Mahdi MA
    Opt Express; 2010 Oct; 18(21):22339-47. PubMed ID: 20941134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable all-optical delays via Brillouin slow light in an optical fiber.
    Okawachi Y; Bigelow MS; Sharping JE; Zhu Z; Schweinsberg A; Gauthier DJ; Boyd RW; Gaeta AL
    Phys Rev Lett; 2005 Apr; 94(15):153902. PubMed ID: 15904146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large Brillouin gain in Germania-doped core optical fibers up to a 98  mol% doping level.
    Deroh M; Kibler B; Maillotte H; Sylvestre T; Beugnot JC
    Opt Lett; 2018 Aug; 43(16):4005-4008. PubMed ID: 30106938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brillouin gain analysis for fibers with different refractive indices.
    Ruffin AB; Li MJ; Chen X; Kobyakov A; Annunziata F
    Opt Lett; 2005 Dec; 30(23):3123-5. PubMed ID: 16342696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.