These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 19529649)

  • 1. Autonomous and 3D real-time multi-beam manipulation in a microfluidic environment.
    Perch-Nielsen IR; Rodrigo PJ; Alonzo CA; Glückstad J
    Opt Express; 2006 Dec; 14(25):12199-205. PubMed ID: 19529649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GPC-based optical micromanipulation in 3D real-time using a single spatial light modulator.
    Rodrigo PJ; Perch-Nielsen IR; Alonzo CA; Glückstad J
    Opt Express; 2006 Dec; 14(26):13107-12. PubMed ID: 19532207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes.
    Perch-Nielsen I; Rodrigo P; Glückstad J
    Opt Express; 2005 Apr; 13(8):2852-7. PubMed ID: 19495180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic multiple-beam counter-propagating optical traps using optical phase-conjugation.
    Woerdemann M; Berghoff K; Denz C
    Opt Express; 2010 Oct; 18(21):22348-57. PubMed ID: 20941135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computerized "drag-and-drop" alignment of GPC-based optical micromanipulation system.
    Dam JS; Rodrigo PJ; Perch-Nielsen IR; Alonzo CA; Glückstad J
    Opt Express; 2007 Feb; 15(4):1923-31. PubMed ID: 19532431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps.
    Rodrigo PJ; Gammelgaard L; Bøggild P; Perch-Nielsen I; Glückstad J
    Opt Express; 2005 Sep; 13(18):6899-904. PubMed ID: 19498709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional forces in GPC-based counterpropagating-beam traps.
    Rodrigo PJ; Perch-Nielsen IR; Glückstad J
    Opt Express; 2006 Jun; 14(12):5812-22. PubMed ID: 19516750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully dynamic multiple-beam optical tweezers.
    Eriksen R; Daria V; Gluckstad J
    Opt Express; 2002 Jul; 10(14):597-602. PubMed ID: 19436404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical trapping and manipulation of single cells using infrared laser beams.
    Ashkin A; Dziedzic JM; Yamane T
    Nature; 1987 Dec 24-31; 330(6150):769-71. PubMed ID: 3320757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Infrared Optical Trapping on Saccharomyces cerevisiae in a Microfluidic System.
    Pilát Z; Jonáš A; Ježek J; Zemánek P
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29144389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactive light-driven and parallel manipulation of inhomogeneous particles.
    Rodrigo P; Eriksen R; Daria V; Glueckstad J
    Opt Express; 2002 Dec; 10(26):1550-6. PubMed ID: 19461691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells.
    Harsono MS; Zhu Q; Shi LZ; Duquette M; Berns MW
    J Biophotonics; 2013 Feb; 6(2):197-204. PubMed ID: 22517735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micromanipulation by "multiple" optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope.
    Visscher K; Brakenhoff GJ; Krol JJ
    Cytometry; 1993; 14(2):105-14. PubMed ID: 8440145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated manipulation of non-spherical micro-objects using optical tweezers combined with image processing techniques.
    Tanaka Y; Kawada H; Hirano K; Ishikawa M; Kitajima H
    Opt Express; 2008 Sep; 16(19):15115-22. PubMed ID: 18795050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic axial stabilization of counter-propagating beam-traps with feedback control.
    Tauro S; Bañas A; Palima D; Glückstad J
    Opt Express; 2010 Aug; 18(17):18217-22. PubMed ID: 20721211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous three-dimensional tracking of individual signals from multi-trap optical tweezers using fast and accurate photodiode detection.
    Ott D; Nader S; Reihani S; Oddershede LB
    Opt Express; 2014 Sep; 22(19):23661-72. PubMed ID: 25321832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The study of cells by optical trapping and manipulation of living cells using infrared laser beams.
    Ashkin A
    ASGSB Bull; 1991 Jul; 4(2):133-46. PubMed ID: 11537176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic formation of optically trapped microstructure arrays for biosensor applications.
    Daria VR; Rodrigo PJ; Glückstad J
    Biosens Bioelectron; 2004 Jun; 19(11):1439-44. PubMed ID: 15093215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GPC light shaper: static and dynamic experimental demonstrations.
    Bañas A; Kopylov O; Villangca M; Palima D; Glückstad J
    Opt Express; 2014 Oct; 22(20):23759-69. PubMed ID: 25321954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional imaging in three-dimensional optical multi-beam micromanipulation.
    Dam JS; Perch-Nielsen IR; Palima D; Glückstad J
    Opt Express; 2008 May; 16(10):7244-50. PubMed ID: 18545429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.