BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19529713)

  • 1. Resonant four-wave mixing of gold nanoparticles for three-dimensional cell microscopy.
    Masia F; Langbein W; Watson P; Borri P
    Opt Lett; 2009 Jun; 34(12):1816-8. PubMed ID: 19529713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolving sub-diffraction limit encounters in nanoparticle tracking using live cell plasmon coupling microscopy.
    Rong G; Wang H; Skewis LR; Reinhard BM
    Nano Lett; 2008 Oct; 8(10):3386-93. PubMed ID: 18788826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processing and characterization of gold nanoparticles for use in plasmon probe spectroscopy and microscopy of biosystems.
    Chen Y; Preece JA; Palmer RE
    Ann N Y Acad Sci; 2008; 1130():201-6. PubMed ID: 18596349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope.
    Chu SW; Su TY; Oketani R; Huang YT; Wu HY; Yonemaru Y; Yamanaka M; Lee H; Zhuo GY; Lee MY; Kawata S; Fujita K
    Phys Rev Lett; 2014 Jan; 112(1):017402. PubMed ID: 24483931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical micro-spectroscopy of single metallic nanoparticles: quantitative extinction and transient resonant four-wave mixing.
    Payne L; Zoriniants G; Masia F; Arkill KP; Verkade P; Rowles D; Langbein W; Borri P
    Faraday Discuss; 2015; 184():305-20. PubMed ID: 26416674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film.
    Poutrina E; Ciracì C; Gauthier DJ; Smith DR
    Opt Express; 2012 May; 20(10):11005-13. PubMed ID: 22565723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional mapping of single gold nanoparticles embedded in a homogeneous transparent matrix using optical second-harmonic generation.
    Butet J; Bachelier G; Duboisset J; Bertorelle F; Russier-Antoine I; Jonin C; Benichou E; Brevet PF
    Opt Express; 2010 Oct; 18(21):22314-23. PubMed ID: 20941132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomedical applications of plasmon resonant metal nanoparticles.
    Liao H; Nehl CL; Hafner JH
    Nanomedicine (Lond); 2006 Aug; 1(2):201-8. PubMed ID: 17716109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization-resolved ultrafast dynamics of the complex polarizability in single gold nanoparticles.
    Masia F; Langbein W; Borri P
    Phys Chem Chem Phys; 2013 Mar; 15(12):4226-32. PubMed ID: 23329258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting.
    Nishijima Y; Rosa L; Juodkazis S
    Opt Express; 2012 May; 20(10):11466-77. PubMed ID: 22565766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybridization of localized surface plasmon resonance-based Au-Ag nanoparticles.
    Zhu S; Fu Y
    Biomed Microdevices; 2009 Jun; 11(3):579-83. PubMed ID: 19085108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subdiffraction scattered light imaging of gold nanoparticles using structured illumination.
    Chang BJ; Lin SH; Chou LJ; Chiang SY
    Opt Lett; 2011 Dec; 36(24):4773-5. PubMed ID: 22179879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface plasmon effects on two photon luminescence of gold nanorods.
    Wang DS; Hsu FY; Lin CW
    Opt Express; 2009 Jul; 17(14):11350-9. PubMed ID: 19582049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical coherence tomography with plasmon resonant nanorods of gold.
    Troutman TS; Barton JK; Romanowski M
    Opt Lett; 2007 Jun; 32(11):1438-40. PubMed ID: 17546147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy.
    Pache C; Bocchio NL; Bouwens A; Villiger M; Berclaz C; Goulley J; Gibson MI; Santschi C; Lasser T
    Opt Express; 2012 Sep; 20(19):21385-99. PubMed ID: 23037262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoring trimers: a versatile structure for infrared sensing.
    Teo SL; Lin VK; Marty R; Large N; Llado EA; Arbouet A; Girard C; Aizpurua J; Tripathy S; Mlayah A
    Opt Express; 2010 Oct; 18(21):22271-82. PubMed ID: 20941128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption.
    Halpern AR; Wood JB; Wang Y; Corn RM
    ACS Nano; 2014 Jan; 8(1):1022-30. PubMed ID: 24350885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas.
    Oh Y; Lee W; Kim D
    Opt Lett; 2011 Apr; 36(8):1353-5. PubMed ID: 21499354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiphoton molecular photorelease in click-chemistry-functionalized gold nanoparticles.
    Voliani V; Ricci F; Signore G; Nifosì R; Luin S; Beltram F
    Small; 2011 Dec; 7(23):3271-5. PubMed ID: 22012898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.