These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 19529735)

  • 1. Ultrasensitive thermal lens spectroscopy of water.
    Cruz RA; Marcano A; Jacinto C; Catunda T
    Opt Lett; 2009 Jun; 34(12):1882-4. PubMed ID: 19529735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Very low optical absorptions and analyte concentrations in water measured by Optimized Thermal Lens Spectrometry.
    Cruz RA; Filadelpho MC; Castro MP; Andrade AA; Souza CM; Catunda T
    Talanta; 2011 Aug; 85(2):850-8. PubMed ID: 21726709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond measurements of two-photon absorption coefficients at lambda = 264 nm in glasses, crystals, and liquids.
    Dragonmir A; McInerney JG; Nikogosyan DN
    Appl Opt; 2002 Jul; 41(21):4365-76. PubMed ID: 12148767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal lens technique: a new method of absorption spectroscopy.
    Long ME; Swofford RL; Albrecht AC
    Science; 1976 Jan; 191(4223):183-5. PubMed ID: 1246605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multi-thermal-lens approach to evaluation of multi-pass probe beam configuration in thermal lens spectrometry.
    Cabrera H; Goljat L; Korte D; Marín E; Franko M
    Anal Chim Acta; 2020 Mar; 1100():182-190. PubMed ID: 31987139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limitations arising from two-photon absorption of solvent in pulsed-laser thermal lens detection: determination of the two-photon absorption coefficient of ethanol at 266 nm.
    Abbas Ghaleb K; Georges J
    Appl Spectrosc; 2006 Jan; 60(1):86-8. PubMed ID: 16454917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical absorptions of light and heavy water by laser optoacoustic spectroscopy.
    Tam AC; Patel CK
    Appl Opt; 1979 Oct; 18(19):3348-58. PubMed ID: 20216605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of tissue absorption coefficients by use of interferometric photothermal spectroscopy.
    Yablon AD; Nishioka NS; Mikić BB; Venugopalan V
    Appl Opt; 1999 Mar; 38(7):1259-72. PubMed ID: 18305741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical Model for Pulsed-Laser Induced Mode-Mismatched Dual-Beam Thermal Lens Spectroscopy in Liquids.
    Isidro-Ojeda MA; Alvarado-Gil JJ; Capeloto OA; Zambrano-Arjona MA
    ACS Omega; 2023 Aug; 8(32):29527-29533. PubMed ID: 37599977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved thermal lens spectroscopy with a single-pulsed laser excitation beam: an analytical model for dual-beam mode-mismatched experiments.
    Sabaeian M; Rezaei H; Ghalambor-Dezfouli A
    Appl Opt; 2017 Feb; 56(4):999-1005. PubMed ID: 28158105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal lens spectroscopy in liquid argon solutions: (Deltav = 6) C-H vibrational overtone absorption of methane.
    Navea JG; Lopez-Calvo A; Manzanares CE
    J Phys Chem A; 2006 Feb; 110(4):1594-9. PubMed ID: 16435821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Differential Thermal Lens Spectrometry Method for Trace Detection.
    Cedeño E; Zuleta R; Mejorada Sánchez JL; Alvarado S; Marín E
    Appl Spectrosc; 2024 Jun; 78(6):644-649. PubMed ID: 38378011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode-mismatched confocal thermal-lens microscope with collimated probe beam.
    Cabrera H; Korte D; Franko M
    Rev Sci Instrum; 2015 May; 86(5):053701. PubMed ID: 26026526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorption spectrum (340-640 nm) of pure water. I. Photothermal measurements.
    Sogandares FM; Fry ES
    Appl Opt; 1997 Nov; 36(33):8699-709. PubMed ID: 18264419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity enhancement of surface thermal lens technique with a short-wavelength probe beam: experiment.
    Zhang X; Li B
    Rev Sci Instrum; 2015 Feb; 86(2):024902. PubMed ID: 25725872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High sensitivity thermal lens microscopy: Cr-VI trace detection in water.
    Cedeño E; Cabrera H; Delgadillo-López AE; Delgado-Vasallo O; Mansanares AM; Calderón A; Marín E
    Talanta; 2017 Aug; 170():260-265. PubMed ID: 28501168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of light-absorbing layers at inner capillary surface by cw excitation crossed-beam thermal-lens spectrometry.
    Nedosekin DA; Faubel W; Proskurnin MA; Pyell U
    Talanta; 2009 May; 78(3):682-90. PubMed ID: 19269412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Chromophoric dissolved organic matter absorption characteristics with relation to fluorescence in typical macrophyte, algae lake zones of Lake Taihu].
    Zhang YL; Qin BQ; Ma RH; Zhu GW; Zhang L; Chen WM
    Huan Jing Ke Xue; 2005 Mar; 26(2):142-7. PubMed ID: 16004317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulsed top-hat beam thermal-lens measurement for ultraviolet dielectric coatings.
    Li B; Martin S; Welsch E
    Opt Lett; 1999 Oct; 24(20):1398-400. PubMed ID: 18079814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absorption and scattering of 1.06 microm laser radiation from oceanic aerosols.
    Fischer R; Ting A; DiComo G; Prosser J; Peñano J; Hafizi B; Sprangle P
    Appl Opt; 2009 Dec; 48(36):6990-9. PubMed ID: 20029602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.