These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 19529740)

  • 21. Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography.
    Wang Y; Bachman M; Li GP; Guo S; Wong BJ; Chen Z
    Opt Lett; 2005 Jan; 30(1):53-5. PubMed ID: 15648635
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Miniaturized single-fiber-based needle probe for combined imaging and sensing in deep tissue.
    Li J; Schartner E; Musolino S; Quirk BC; Kirk RW; Ebendorff-Heidepriem H; McLaughlin RA
    Opt Lett; 2018 Apr; 43(8):1682-1685. PubMed ID: 29652339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fiber-optic-bundle-based optical coherence tomography.
    Xie T; Mukai D; Guo S; Brenner M; Chen Z
    Opt Lett; 2005 Jul; 30(14):1803-5. PubMed ID: 16092351
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrathin lensed fiber-optic probe for optical coherence tomography.
    Qiu Y; Wang Y; Belfield KD; Liu X
    Biomed Opt Express; 2016 Jun; 7(6):2154-62. PubMed ID: 27375934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of coated optical fibers by Fourier-domain optical coherence tomography.
    Jasapara J; Wielandy S
    Opt Lett; 2005 May; 30(9):1018-20. PubMed ID: 15906989
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Double-pass rotary mirror array for fast scanning optical delay line.
    Liu L; Chen NG
    Appl Opt; 2006 Jul; 45(21):5426-31. PubMed ID: 16826279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components.
    Park BH; Pierce MC; Cense B; de Boer JF
    Opt Lett; 2004 Nov; 29(21):2512-4. PubMed ID: 15584278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe.
    Tran PH; Mukai DS; Brenner M; Chen Z
    Opt Lett; 2004 Jun; 29(11):1236-8. PubMed ID: 15209258
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of Design and Fabrication Parameters for Lensed Optical Fibers as Pertinent Probes for Sensing and Imaging.
    Park S; Rim S; Kim JW; Park J; Sohn IB; Lee BH
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual-fiber stretcher as a tunable dispersion compensator for an all-fiber optical coherence tomography system.
    Iyer S; Coen S; Vanholsbeeck F
    Opt Lett; 2009 Oct; 34(19):2903-5. PubMed ID: 19794762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Micromachined array tip for multifocus fiber-based optical coherence tomography.
    Yang VX; Munce N; Pekar J; Gordon ML; Lo S; Marcon NE; Wilson BC; Vitkin IA
    Opt Lett; 2004 Aug; 29(15):1754-6. PubMed ID: 15352360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In-line optical fiber metallic mirror reflector for monolithic common path optical coherence tomography probes.
    Singh K; Reddy R; Sharma G; Verma Y; Gardecki JA; Tearney G
    Lasers Surg Med; 2018 Mar; 50(3):230-235. PubMed ID: 29105794
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combined system of optical coherence tomography and fluorescence spectroscopy based on double-cladding fiber.
    Ryu SY; Choi HY; Na J; Choi ES; Lee BH
    Opt Lett; 2008 Oct; 33(20):2347-9. PubMed ID: 18923618
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrathin fiber probes with extended depth of focus for optical coherence tomography.
    Lorenser D; Yang X; Sampson DD
    Opt Lett; 2012 May; 37(10):1616-8. PubMed ID: 22627514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hemoglobin contrast in magnetomotive optical Doppler tomography.
    Kim J; Oh J; Milner TE; Nelson JS
    Opt Lett; 2006 Mar; 31(6):778-80. PubMed ID: 16544621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlling the optical path length in turbid media using differential path-length spectroscopy: fiber diameter dependence.
    Kaspers OP; Sterenborg HJ; Amelink A
    Appl Opt; 2008 Jan; 47(3):365-71. PubMed ID: 18204723
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dispersion compensation in high-speed optical coherence tomography by acousto-optic modulation.
    Xie T; Wang Z; Pan Y
    Appl Opt; 2005 Jul; 44(20):4272-80. PubMed ID: 16045215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and processing of high-density single-mode fiber arrays for imaging and parallel interferometer applications.
    Scepanovic M; Castillo JE; Barton JK; Mathine D; Kostuk RK; Sato A
    Appl Opt; 2004 Jul; 43(21):4150-6. PubMed ID: 15291057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrostatic forward-viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter.
    Munce NR; Mariampillai A; Standish BA; Pop M; Anderson KJ; Liu GY; Luk T; Courtney BK; Wright GA; Vitkin IA; Yang VX
    Opt Lett; 2008 Apr; 33(7):657-9. PubMed ID: 18382508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of an angled fiber probe for common-path optical coherence tomography.
    Liu X; Kang JU
    Opt Lett; 2013 Aug; 38(15):2660-2. PubMed ID: 23903104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.