BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 19529756)

  • 1. Crystal structure of a yeast aquaporin at 1.15 angstrom reveals a novel gating mechanism.
    Fischer G; Kosinska-Eriksson U; Aponte-Santamaría C; Palmgren M; Geijer C; Hedfalk K; Hohmann S; de Groot BL; Neutze R; Lindkvist-Petersson K
    PLoS Biol; 2009 Jun; 7(6):e1000130. PubMed ID: 19529756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependence of protein-water interactions in a gated yeast aquaporin.
    Aponte-Santamaría C; Fischer G; Båth P; Neutze R; de Groot BL
    Sci Rep; 2017 Jun; 7(1):4016. PubMed ID: 28638135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural mechanism of plant aquaporin gating.
    Törnroth-Horsefield S; Wang Y; Hedfalk K; Johanson U; Karlsson M; Tajkhorshid E; Neutze R; Kjellbom P
    Nature; 2006 Feb; 439(7077):688-94. PubMed ID: 16340961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulation and bioinformatics study on yeast aquaporin Aqy1 from Pichia pastoris.
    Cui Y; Bastien DA
    Int J Biol Sci; 2012; 8(7):1026-35. PubMed ID: 22904671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional analysis of SoPIP2;1 mutants adds insight into plant aquaporin gating.
    Nyblom M; Frick A; Wang Y; Ekvall M; Hallgren K; Hedfalk K; Neutze R; Tajkhorshid E; Törnroth-Horsefield S
    J Mol Biol; 2009 Apr; 387(3):653-68. PubMed ID: 19302796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for pH gating of plant aquaporins.
    Frick A; Järvå M; Törnroth-Horsefield S
    FEBS Lett; 2013 Apr; 587(7):989-93. PubMed ID: 23454640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of aquaporin-driven hydrogen peroxide transport.
    Wang H; Schoebel S; Schmitz F; Dong H; Hedfalk K
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183065. PubMed ID: 31521632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subangstrom resolution X-ray structure details aquaporin-water interactions.
    Eriksson UK; Fischer G; Friemann R; Enkavi G; Tajkhorshid E; Neutze R
    Science; 2013 Jun; 340(6138):1346-1349. PubMed ID: 23766328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into eukaryotic aquaporin regulation.
    Törnroth-Horsefield S; Hedfalk K; Fischer G; Lindkvist-Petersson K; Neutze R
    FEBS Lett; 2010 Jun; 584(12):2580-8. PubMed ID: 20416297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into structural mechanisms of gating induced regulation of aquaporins.
    Sachdeva R; Singh B
    Prog Biophys Mol Biol; 2014 Apr; 114(2):69-79. PubMed ID: 24495464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function analysis of plant aquaporin AtPIP2;1 gating by divalent cations and protons.
    Verdoucq L; Grondin A; Maurel C
    Biochem J; 2008 Nov; 415(3):409-16. PubMed ID: 18637793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast water channels: an overview of orthodox aquaporins.
    Soveral G; Prista C; Moura TF; Loureiro-Dias MC
    Biol Cell; 2010 Jan; 103(1):35-54. PubMed ID: 21143194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substitution of a single amino acid residue in the aromatic/arginine selectivity filter alters the transport profiles of tonoplast aquaporin homologs.
    Azad AK; Yoshikawa N; Ishikawa T; Sawa Y; Shibata H
    Biochim Biophys Acta; 2012 Jan; 1818(1):1-11. PubMed ID: 21963407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. To gate or not to gate: using molecular dynamics simulations to morph gated plant aquaporins into constitutively open conformations.
    Khandelia H; Jensen MØ; Mouritsen OG
    J Phys Chem B; 2009 Apr; 113(15):5239-44. PubMed ID: 19320451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water and glycerol permeation through the glycerol channel GlpF and the aquaporin family.
    Lee JK; Khademi S; Harries W; Savage D; Miercke L; Stroud RM
    J Synchrotron Radiat; 2004 Jan; 11(Pt 1):86-8. PubMed ID: 14646142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Basis for Glycerol Efflux and Selectivity of Human Aquaporin 7.
    de Maré SW; Venskutonytė R; Eltschkner S; de Groot BL; Lindkvist-Petersson K
    Structure; 2020 Feb; 28(2):215-222.e3. PubMed ID: 31831212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gating in plant plasma membrane aquaporins: the involvement of leucine in the formation of a pore constriction in the closed state.
    Canessa Fortuna A; Zerbetto De Palma G; Aliperti Car L; Armentia L; Vitali V; Zeida A; Estrin DA; Alleva K
    FEBS J; 2019 Sep; 286(17):3473-3487. PubMed ID: 31077546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selectivity and transport in aquaporins from molecular simulation studies.
    Padhi S; Priyakumar UD
    Vitam Horm; 2020; 112():47-70. PubMed ID: 32061349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The 5A structure of heterologously expressed plant aquaporin SoPIP2;1.
    Kukulski W; Schenk AD; Johanson U; Braun T; de Groot BL; Fotiadis D; Kjellbom P; Engel A
    J Mol Biol; 2005 Jul; 350(4):611-6. PubMed ID: 15964017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant aquaporins: novel functions and regulation properties.
    Maurel C
    FEBS Lett; 2007 May; 581(12):2227-36. PubMed ID: 17382935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.