These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 19530278)

  • 1. Mitochondrial function and redox state in mammalian embryos.
    Dumollard R; Carroll J; Duchen MR; Campbell K; Swann K
    Semin Cell Dev Biol; 2009 May; 20(3):346-53. PubMed ID: 19530278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of redox metabolism in the mouse oocyte and embryo.
    Dumollard R; Ward Z; Carroll J; Duchen MR
    Development; 2007 Feb; 134(3):455-65. PubMed ID: 17185319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress and redox regulation on in vitro development of mammalian embryos.
    Takahashi M
    J Reprod Dev; 2012; 58(1):1-9. PubMed ID: 22450278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of vitrification on the mitochondrial activity and redox homeostasis of human oocyte.
    Nohales-Córcoles M; Sevillano-Almerich G; Di Emidio G; Tatone C; Cobo AC; Dumollard R; De Los Santos Molina MJ
    Hum Reprod; 2016 Aug; 31(8):1850-8. PubMed ID: 27251202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.
    Harris C; Shuster DZ; Roman Gomez R; Sant KE; Reed MS; Pohl J; Hansen JM
    Free Radic Biol Med; 2013 Oct; 63():325-37. PubMed ID: 23736079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved cryotolerance and developmental potential of in vitro and in vivo matured mouse oocytes by supplementing with a glutathione donor prior to vitrification.
    Trapphoff T; Heiligentag M; Simon J; Staubach N; Seidel T; Otte K; Fröhlich T; Arnold GJ; Eichenlaub-Ritter U
    Mol Hum Reprod; 2016 Dec; 22(12):867-881. PubMed ID: 27604460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondria and lipid metabolism in mammalian oocytes and early embryos.
    Bradley J; Swann K
    Int J Dev Biol; 2019; 63(3-4-5):93-103. PubMed ID: 31058306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.
    Mailloux RJ; Treberg JR
    Redox Biol; 2016 Aug; 8():110-8. PubMed ID: 26773874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperglycemia in a type 1 Diabetes Mellitus model causes a shift in mitochondria coupled-glucose phosphorylation and redox metabolism in rat brain.
    Silva-Rodrigues T; de-Souza-Ferreira E; Machado CM; Cabral-Braga B; Rodrigues-Ferreira C; Galina A
    Free Radic Biol Med; 2020 Nov; 160():796-806. PubMed ID: 32949665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations.
    Brennan LA; Kantorow M
    Exp Eye Res; 2009 Feb; 88(2):195-203. PubMed ID: 18588875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic and mitochondrial dysfunction in early mouse embryos following maternal dietary protein intervention.
    Mitchell M; Schulz SL; Armstrong DT; Lane M
    Biol Reprod; 2009 Apr; 80(4):622-30. PubMed ID: 19129514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of mitochondrial function in the oocyte and embryo.
    Dumollard R; Duchen M; Carroll J
    Curr Top Dev Biol; 2007; 77():21-49. PubMed ID: 17222699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells.
    Ramalho-Santos J; Varum S; Amaral S; Mota PC; Sousa AP; Amaral A
    Hum Reprod Update; 2009; 15(5):553-72. PubMed ID: 19414527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
    Korge P; Calmettes G; Weiss JN
    Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox-optimized ROS balance: a unifying hypothesis.
    Aon MA; Cortassa S; O'Rourke B
    Biochim Biophys Acta; 2010; 1797(6-7):865-77. PubMed ID: 20175987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes.
    Jain M; Brenner DA; Cui L; Lim CC; Wang B; Pimentel DR; Koh S; Sawyer DB; Leopold JA; Handy DE; Loscalzo J; Apstein CS; Liao R
    Circ Res; 2003 Jul; 93(2):e9-16. PubMed ID: 12829617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thioredoxin-interacting protein regulates glucose metabolism and improves the intracellular redox state in bovine oocytes during in vitro maturation.
    Jiang X; Pang Y; Zhao S; Hao H; Zhao X; Du W; Wang Y; Zhu H
    Am J Physiol Endocrinol Metab; 2020 Mar; 318(3):E405-E416. PubMed ID: 31935112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondria-targeted therapy rescues development and quality of embryos derived from oocytes matured under oxidative stress conditions: a bovine in vitro model.
    Marei WFA; Van den Bosch L; Pintelon I; Mohey-Elsaeed O; Bols PEJ; Leroy JLMR
    Hum Reprod; 2019 Oct; 34(10):1984-1998. PubMed ID: 31625574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative stress, thiols, and redox profiles.
    Harris C; Hansen JM
    Methods Mol Biol; 2012; 889():325-46. PubMed ID: 22669675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative flux analysis reveals folate-dependent NADPH production.
    Fan J; Ye J; Kamphorst JJ; Shlomi T; Thompson CB; Rabinowitz JD
    Nature; 2014 Jun; 510(7504):298-302. PubMed ID: 24805240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.