These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19530661)

  • 41. Comments on the definition of the Q2 parameter for QSAR validation.
    Consonni V; Ballabio D; Todeschini R
    J Chem Inf Model; 2009 Jul; 49(7):1669-78. PubMed ID: 19527034
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mining chemical reactions using neighborhood behavior and condensed graphs of reactions approaches.
    de Luca A; Horvath D; Marcou G; Solov'ev V; Varnek A
    J Chem Inf Model; 2012 Sep; 52(9):2325-38. PubMed ID: 22894688
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Critical comparison of virtual screening methods against the MUV data set.
    Tiikkainen P; Markt P; Wolber G; Kirchmair J; Distinto S; Poso A; Kallioniemi O
    J Chem Inf Model; 2009 Oct; 49(10):2168-78. PubMed ID: 19799417
    [TBL] [Abstract][Full Text] [Related]  

  • 44. QSAR applicabilty domain estimation by projection of the training set descriptor space: a review.
    Jaworska J; Nikolova-Jeliazkova N; Aldenberg T
    Altern Lab Anim; 2005 Oct; 33(5):445-59. PubMed ID: 16268757
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In silico log P prediction for a large data set with support vector machines, radial basis neural networks and multiple linear regression.
    Chen HF
    Chem Biol Drug Des; 2009 Aug; 74(2):142-7. PubMed ID: 19549084
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Target-Driven Subspace Mapping Methods and Their Applicability Domain Estimation.
    Soto AJ; Vazquez GE; Strickert M; Ponzoni I
    Mol Inform; 2011 Sep; 30(9):779-89. PubMed ID: 27467410
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prediction of photosensitivity of 1,4-dihydropyridine antihypertensives by quantitative structure-property relationship.
    Ioele G; De Luca M; Oliverio F; Ragno G
    Talanta; 2009 Oct; 79(5):1418-24. PubMed ID: 19635379
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Predictive models, based on classification algorithms, for compounds potentially active as mitochondrial ATP-sensitive potassium channel openers.
    Coi A; Bianucci AM; Calderone V; Testai L; Digiacomo M; Rapposelli S; Balsamo A
    Bioorg Med Chem; 2009 Aug; 17(15):5565-71. PubMed ID: 19595602
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Predicting the Thermal Stability of Nitroaromatic Compounds Using Chemoinformatic Tools.
    Fayet G; Del Rio A; Rotureau P; Joubert L; Adamo C
    Mol Inform; 2011 Jun; 30(6-7):623-34. PubMed ID: 27467162
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improving quantitative structure-activity relationships through multiobjective optimization.
    Nicolotti O; Giangreco I; Miscioscia TF; Carotti A
    J Chem Inf Model; 2009 Oct; 49(10):2290-302. PubMed ID: 19785453
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Estimation of the applicability domain of kernel-based machine learning models for virtual screening.
    Fechner N; Jahn A; Hinselmann G; Zell A
    J Cheminform; 2010 Mar; 2(1):2. PubMed ID: 20222949
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chemoinformatic Classification Methods and their Applicability Domain.
    Mathea M; Klingspohn W; Baumann K
    Mol Inform; 2016 May; 35(5):160-80. PubMed ID: 27492083
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Strategy for reduced calibration sets to develop quantitative structure-retention relationships in high-performance liquid chromatography.
    Andries JP; Claessens HA; Heyden YV; Buydens LM
    Anal Chim Acta; 2009 Oct; 652(1-2):180-8. PubMed ID: 19786179
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Forecasting CYP2D6 and CYP3A4 Risk with a Global/Local Fusion Model of CYP450 Inhibition.
    Ewing T; Feher M
    Mol Inform; 2010 Jan; 29(1-2):127-41. PubMed ID: 27463854
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Piecewise linear models with guaranteed closeness to the data.
    Latecki LJ; Sobel M; Lakaemper R
    IEEE Trans Pattern Anal Mach Intell; 2009 Aug; 31(8):1525-31. PubMed ID: 19542585
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Applicability domain: towards a more formal definition.
    Hanser T; Barber C; Marchaland JF; Werner S
    SAR QSAR Environ Res; 2016 Nov; 27(11):893-909. PubMed ID: 27827546
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Visual Interpretation of Kernel-Based Prediction Models.
    Hansen K; Baehrens D; Schroeter T; Rupp M; Müller KR
    Mol Inform; 2011 Sep; 30(9):817-26. PubMed ID: 27467414
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Trustworthiness, the Key to Grid-Based Map-Driven Predictive Model Enhancement and Applicability Domain Control.
    Horvath D; Marcou G; Varnek A
    J Chem Inf Model; 2020 Dec; 60(12):6020-6032. PubMed ID: 33172272
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Subchronic Oral and Inhalation Toxicities: a Challenging Attempt for Modeling and Prediction.
    Dobchev DA; Tulp I; Karelson G; Tamm T; Tämm K; Karelson M
    Mol Inform; 2013 Oct; 32(9-10):793-801. PubMed ID: 27480232
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Defining a novel k-nearest neighbours approach to assess the applicability domain of a QSAR model for reliable predictions.
    Sahigara F; Ballabio D; Todeschini R; Consonni V
    J Cheminform; 2013 May; 5(1):27. PubMed ID: 23721648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.