These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
411 related articles for article (PubMed ID: 19530717)
1. Effect of vermicomposts from wastes of the wine and alcohol industries in the persistence and distribution of imidacloprid and diuron on agricultural soils. Fernández-Bayo JD; Nogales R; Romero E J Agric Food Chem; 2009 Jun; 57(12):5435-42. PubMed ID: 19530717 [TBL] [Abstract][Full Text] [Related]
2. Winery vermicomposts to control the leaching of diuron, imidacloprid and their metabolites: role of dissolved organic carbon content. Fernández-Bayo JD; Nogales R; Romero E J Environ Sci Health B; 2015; 50(3):190-200. PubMed ID: 25602152 [TBL] [Abstract][Full Text] [Related]
3. Assessment of pesticide availability in soil fractions after the incorporation of winery-distillery vermicomposts. Fernández-Bayo JD; Romero E; Schnitzler F; Burauel P Environ Pollut; 2008 Jul; 154(2):330-7. PubMed ID: 18023948 [TBL] [Abstract][Full Text] [Related]
4. Improved retention of imidacloprid (Confidor) in soils by adding vermicompost from spent grape marc. Fernández-Bayo JD; Nogales R; Romero E Sci Total Environ; 2007 May; 378(1-2):95-100. PubMed ID: 17306335 [TBL] [Abstract][Full Text] [Related]
5. Degradation and sorption of imidacloprid in dissimilar surface and subsurface soils. Anhalt JC; Moorman TB; Koskinen WC J Environ Sci Health B; 2008; 43(3):207-13. PubMed ID: 18368539 [TBL] [Abstract][Full Text] [Related]
6. Characterization of adsorption and degradation of diuron in carbonatic and noncarbonatic soils. Kasozi GN; Nkedi-Kizza P; Agyin-Birikorang S; Zimmerman AR J Agric Food Chem; 2010 Jan; 58(2):1055-61. PubMed ID: 20047273 [TBL] [Abstract][Full Text] [Related]
7. Bioavailability of diuron, imazapic and isoxaflutole in soils of contrasting textures. Inoue MH; Oliveira RS; Constantin J; Alonso DG; Tormena CA J Environ Sci Health B; 2009 Nov; 44(8):757-63. PubMed ID: 20183087 [TBL] [Abstract][Full Text] [Related]
8. Sorption of pesticides in tropical and temperate soils from Australia and the Philippines. Oliver DP; Kookana RS; Quintana B J Agric Food Chem; 2005 Aug; 53(16):6420-5. PubMed ID: 16076128 [TBL] [Abstract][Full Text] [Related]
9. Short-term carbon and nitrogen mineralisation in soil amended with winery and distillery organic wastes. Bustamante MA; Pérez-Murcia MD; Paredes C; Moral R; Pérez-Espinosa A; Moreno-Caselles J Bioresour Technol; 2007 Dec; 98(17):3269-77. PubMed ID: 16919937 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the sorption process for imidacloprid and diuron in eight agricultural soils from southern Europe using various kinetic models. Fernández-Bayo JD; Nogales R; Romero E J Agric Food Chem; 2008 Jul; 56(13):5266-72. PubMed ID: 18540620 [TBL] [Abstract][Full Text] [Related]
11. Multidisciplinary assessment of pesticide mitigation in soil amended with vermicomposted agroindustrial wastes. Castillo JM; Beguet J; Martin-Laurent F; Romero E J Hazard Mater; 2016 Mar; 304():379-87. PubMed ID: 26590874 [TBL] [Abstract][Full Text] [Related]
12. Adsorption and degradation of triclosan and triclocarban in soils and biosolids-amended soils. Wu C; Spongberg AL; Witter JD J Agric Food Chem; 2009 Jun; 57(11):4900-5. PubMed ID: 19441835 [TBL] [Abstract][Full Text] [Related]
13. Sorption and desorption of endosulfan sulfate and diuron to composted cotton gin trash. Burns M; Crossan AN; Kennedy IR; Rose MT J Agric Food Chem; 2008 Jul; 56(13):5260-5. PubMed ID: 18543928 [TBL] [Abstract][Full Text] [Related]
14. Fate of diuron and terbuthylazine in soils amended with two-phase olive oil mill waste. Cabrera A; Cox L; Velarde P; Koskinen WC; Cornejo J J Agric Food Chem; 2007 Jun; 55(12):4828-34. PubMed ID: 17511468 [TBL] [Abstract][Full Text] [Related]
15. Mathematical prediction of imidacloprid persistence in two Croatian soils with different texture, organic matter content and acidity under laboratory conditions. Broznić D; Milin Č J Environ Sci Health B; 2013; 48(11):906-18. PubMed ID: 23998302 [TBL] [Abstract][Full Text] [Related]
16. Use of farming and agro-industrial wastes as versatile barriers in reducing pesticide leaching through soil columns. Fenoll J; Ruiz E; Flores P; Vela N; Hellín P; Navarro S J Hazard Mater; 2011 Mar; 187(1-3):206-12. PubMed ID: 21282003 [TBL] [Abstract][Full Text] [Related]
17. Effect of different organic amendments on the dissipation of linuron, diazinon and myclobutanil in an agricultural soil incubated for different time periods. Marín-Benito JM; Herrero-Hernández E; Andrades MS; Sánchez-Martín MJ; Rodríguez-Cruz MS Sci Total Environ; 2014 Apr; 476-477():611-21. PubMed ID: 24496034 [TBL] [Abstract][Full Text] [Related]
18. Diuron mobility through vineyard soils contaminated with copper. Jacobson AR; Dousset S; Guichard N; Baveye P; Andreux F Environ Pollut; 2005 Nov; 138(2):250-9. PubMed ID: 15951080 [TBL] [Abstract][Full Text] [Related]
19. Biocompost from sugar distillery effluent: effect on metribuzin degradation, sorption and mobility. Singh N Pest Manag Sci; 2008 Oct; 64(10):1057-62. PubMed ID: 18454433 [TBL] [Abstract][Full Text] [Related]
20. Reduction of the movement and persistence of pesticides in soil through common agronomic practices. Fenoll J; Ruiz E; Flores P; Hellín P; Navarro S Chemosphere; 2011 Nov; 85(8):1375-82. PubMed ID: 21872905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]