BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

731 related articles for article (PubMed ID: 19530777)

  • 1. Computing the viscosity of supercooled liquids.
    Kushima A; Lin X; Li J; Eapen J; Mauro JC; Qian X; Diep P; Yip S
    J Chem Phys; 2009 Jun; 130(22):224504. PubMed ID: 19530777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computing the viscosity of supercooled liquids. II. Silica and strong-fragile crossover behavior.
    Kushima A; Lin X; Li J; Qian X; Eapen J; Mauro JC; Diep P; Yip S
    J Chem Phys; 2009 Oct; 131(16):164505. PubMed ID: 19894954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global perspectives on the energy landscapes of liquids, supercooled liquids, and glassy systems: the potential energy landscape ensemble.
    Wang C; Stratt RM
    J Chem Phys; 2007 Dec; 127(22):224503. PubMed ID: 18081402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computing the viscosity of supercooled liquids: Markov Network model.
    Li J; Kushima A; Eapen J; Lin X; Qian X; Mauro JC; Diep P; Yip S
    PLoS One; 2011 Mar; 6(3):e17909. PubMed ID: 21464988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the role of inherent structures in glass-forming materials: I. The vitrification process.
    Tsalikis DG; Lempesis N; Boulougouris GC; Theodorou DN
    J Phys Chem B; 2008 Aug; 112(34):10619-27. PubMed ID: 18671423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanism of reorientational and structural relaxation in supercooled liquids: the role of border dynamics and cooperativity.
    Kim J; Keyes T
    J Chem Phys; 2004 Sep; 121(9):4237-45. PubMed ID: 15332971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous diffusion in supercooled liquids: a long-range localization in particle trajectories.
    Oppelstrup T; Dzugutov M
    J Chem Phys; 2009 Jul; 131(4):044510. PubMed ID: 19655897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica.
    Saika-Voivod I; Poole PH; Sciortino F
    Nature; 2001 Aug; 412(6846):514-7. PubMed ID: 11484046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gaussian excitations model for glass-former dynamics and thermodynamics.
    Matyushov DV; Angell CA
    J Chem Phys; 2007 Mar; 126(9):094501. PubMed ID: 17362109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-Gaussian excitations model for the glass transition.
    Matyushov DV; Angell CA
    J Chem Phys; 2005 Jul; 123(3):34506. PubMed ID: 16080743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of supercooled water in confined geometry.
    Bergman R; Swenson J
    Nature; 2000 Jan; 403(6767):283-6. PubMed ID: 10659841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules.
    Hamelberg D; Mongan J; McCammon JA
    J Chem Phys; 2004 Jun; 120(24):11919-29. PubMed ID: 15268227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fractional Stokes-Einstein equation: application to Lennard-Jones, molecular, and ionic liquids.
    Harris KR
    J Chem Phys; 2009 Aug; 131(5):054503. PubMed ID: 19673570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cutoff radius effect of isotropic periodic sum method for transport coefficients of Lennard-Jones liquid.
    Takahashi K; Yasuoka K; Narumi T
    J Chem Phys; 2007 Sep; 127(11):114511. PubMed ID: 17887861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking rigidity transitions with enthalpic changes at the glass transition and fragility: insight from a simple oscillator model.
    Micoulaut M
    J Phys Condens Matter; 2010 Jul; 22(28):285101. PubMed ID: 21399290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global perspectives on the energy landscapes of liquids, supercooled liquids, and glassy systems: geodesic pathways through the potential energy landscape.
    Wang C; Stratt RM
    J Chem Phys; 2007 Dec; 127(22):224504. PubMed ID: 18081403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the dynamics of glass-forming liquids from the properties of the potential energy landscape.
    Banerjee S; Dasgupta C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021501. PubMed ID: 22463213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscosity scaling for the glassy phase of protein folding.
    Kumar R; Bhuyan AK
    J Phys Chem B; 2008 Oct; 112(39):12549-54. PubMed ID: 18781712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring diffusivity in supercooled liquid nanoscale films using inert gas permeation. I. Kinetic model and scaling methods.
    Smith RS; Matthiesen J; Kay BD
    J Chem Phys; 2010 Nov; 133(17):174504. PubMed ID: 21054048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.