These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19531013)

  • 1. Inhibitors of the lipid phosphatase SHIP2 discovered by high-throughput affinity selection-mass spectrometry screening of combinatorial libraries.
    Annis DA; Cheng CC; Chuang CC; McCarter JD; Nash HM; Nazef N; Rowe T; Kurzeja RJ; Shipps GW
    Comb Chem High Throughput Screen; 2009 Sep; 12(8):760-71. PubMed ID: 19531013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of crizotinib derivatives as potent SHIP2 inhibitors for the treatment of Alzheimer's disease.
    Lim JW; Kim SK; Choi SY; Kim DH; Gadhe CG; Lee HN; Kim HJ; Kim J; Cho SJ; Hwang H; Seong J; Jeong KS; Lee JY; Lim SM; Lee JW; Pae AN
    Eur J Med Chem; 2018 Sep; 157():405-422. PubMed ID: 30103190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational design and synthesis of 4-substituted 2-pyridin-2-ylamides with inhibitory effects on SH2 domain-containing inositol 5'-phosphatase 2 (SHIP2).
    Ichihara Y; Fujimura R; Tsuneki H; Wada T; Okamoto K; Gouda H; Hirono S; Sugimoto K; Matsuya Y; Sasaoka T; Toyooka N
    Eur J Med Chem; 2013 Apr; 62():649-60. PubMed ID: 23434638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput discovery of Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB) inhibitors using click chemistry.
    Tan LP; Wu H; Yang PY; Kalesh KA; Zhang X; Hu M; Srinivasan R; Yao SQ
    Org Lett; 2009 Nov; 11(22):5102-5. PubMed ID: 19852491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of Affinity Selection-Mass Spectrometry and Functional Cell-Based Assays to Rapidly Triage Druggable Target Space within the NF-κB Pathway.
    Kutilek VD; Andrews CL; Richards MP; Xu Z; Sun T; Chen Y; Hashke A; Smotrov N; Fernandez R; Nickbarg EB; Chamberlin C; Sauvagnat B; Curran PJ; Boinay R; Saradjian P; Allen SJ; Byrne N; Elsen NL; Ford RE; Hall DL; Kornienko M; Rickert KW; Sharma S; Shipman JM; Lumb KJ; Coleman K; Dandliker PJ; Kariv I; Beutel B
    J Biomol Screen; 2016 Jul; 21(6):608-19. PubMed ID: 26969322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A synthetic polyphosphoinositide headgroup surrogate in complex with SHIP2 provides a rationale for drug discovery.
    Mills SJ; Persson C; Cozier G; Thomas MP; Trésaugues L; Erneux C; Riley AM; Nordlund P; Potter BV
    ACS Chem Biol; 2012 May; 7(5):822-8. PubMed ID: 22330088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normalization of prandial blood glucose and improvement of glucose tolerance by liver-specific inhibition of SH2 domain containing inositol phosphatase 2 (SHIP2) in diabetic KKAy mice: SHIP2 inhibition causes insulin-mimetic effects on glycogen metabolism, gluconeogenesis, and glycolysis.
    Grempler R; Zibrova D; Schoelch C; van Marle A; Rippmann JF; Redemann N
    Diabetes; 2007 Sep; 56(9):2235-41. PubMed ID: 17596404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of inhibitors of inositol 5-phosphatases through multiple screening strategies.
    Pirruccello M; Nandez R; Idevall-Hagren O; Alcazar-Roman A; Abriola L; Berwick SA; Lucast L; Morel D; De Camilli P
    ACS Chem Biol; 2014 Jun; 9(6):1359-68. PubMed ID: 24742366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method for quantitative protein-ligand affinity measurements in compound mixtures.
    Annis DA; Shipps GW; Deng Y; Popovici-Müller J; Siddiqui MA; Curran PJ; Gowen M; Windsor WT
    Anal Chem; 2007 Jun; 79(12):4538-42. PubMed ID: 17500537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The association between the SH2-containing inositol polyphosphate 5-Phosphatase 2 (SHIP2) and the adaptor protein APS has an impact on biochemical properties of both partners.
    Onnockx S; De Schutter J; Blockmans M; Xie J; Jacobs C; Vanderwinden JM; Erneux C; Pirson I
    J Cell Physiol; 2008 Jan; 214(1):260-72. PubMed ID: 17620296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-throughput microfluidic assay for SH2 domain-containing inositol 5-phosphatase 2.
    Rowe T; Hale C; Zhou A; Kurzeja RJ; Ali A; Menjares A; Wang M; McCarter JD
    Assay Drug Dev Technol; 2006 Apr; 4(2):175-83. PubMed ID: 16712421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass spectrometry in high-throughput screening: a case study on acetyl-coenzyme a carboxylase using RapidFire--mass spectrometry (RF-MS).
    Jonas M; LaMarr WA; Ozbal C
    Comb Chem High Throughput Screen; 2009 Sep; 12(8):752-9. PubMed ID: 19531010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general technique to rank protein-ligand binding affinities and determine allosteric versus direct binding site competition in compound mixtures.
    Annis DA; Nazef N; Chuang CC; Scott MP; Nash HM
    J Am Chem Soc; 2004 Dec; 126(47):15495-503. PubMed ID: 15563178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening for antibacterial inhibitors of the UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) using a high-throughput mass spectrometry assay.
    Langsdorf EF; Malikzay A; Lamarr WA; Daubaras D; Kravec C; Zhang R; Hart R; Monsma F; Black T; Ozbal CC; Miesel L; Lunn CA
    J Biomol Screen; 2010 Jan; 15(1):52-61. PubMed ID: 20019290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of anionic lipids on SHIP2 phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase activity.
    Vandeput F; Backers K; Villeret V; Pesesse X; Erneux C
    Cell Signal; 2006 Dec; 18(12):2193-9. PubMed ID: 16824732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis and evaluation of benzoisothiazolones as selective inhibitors of PHOSPHO1.
    Bravo Y; Teriete P; Dhanya RP; Dahl R; Lee PS; Kiffer-Moreira T; Ganji SR; Sergienko E; Smith LH; Farquharson C; Millán JL; Cosford ND
    Bioorg Med Chem Lett; 2014 Sep; 24(17):4308-11. PubMed ID: 25124115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid phosphatases as a possible therapeutic target in cases of type 2 diabetes and obesity.
    Sasaoka T; Wada T; Tsuneki H
    Pharmacol Ther; 2006 Dec; 112(3):799-809. PubMed ID: 16842857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid discovery of triazolobenzylidene-thiazolopyrimidines (TBTP) as CDC25 phosphatase inhibitors by parallel click chemistry and in situ screening.
    Duval R; Kolb S; Braud E; Genest D; Garbay C
    J Comb Chem; 2009; 11(6):947-50. PubMed ID: 19835352
    [No Abstract]   [Full Text] [Related]  

  • 19. Parallel synthesis of potent, pyrazole-based inhibitors of Helicobacter pylori dihydroorotate dehydrogenase.
    Haque TS; Tadesse S; Marcinkeviciene J; Rogers MJ; Sizemore C; Kopcho LM; Amsler K; Ecret LD; Zhan DL; Hobbs F; Slee A; Trainor GL; Stern AM; Copeland RA; Combs AP
    J Med Chem; 2002 Oct; 45(21):4669-78. PubMed ID: 12361393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of PDGF-stimulated SHIP2 tyrosine phosphorylation and association with Shc in 3T3-L1 preadipocytes.
    Artemenko Y; Gagnon A; Ibrahim S; Sorisky A
    J Cell Physiol; 2007 Jun; 211(3):598-607. PubMed ID: 17219406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.