These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 19531661)
1. Polyplexed flow cytometry protein interaction assay: a novel high-throughput screening paradigm for RGS protein inhibitors. Roman DL; Ota S; Neubig RR J Biomol Screen; 2009 Jul; 14(6):610-9. PubMed ID: 19531661 [TBL] [Abstract][Full Text] [Related]
2. Reversible inhibitors of regulators of G-protein signaling identified in a high-throughput cell-based calcium signaling assay. Storaska AJ; Mei JP; Wu M; Li M; Wade SM; Blazer LL; Sjögren B; Hopkins CR; Lindsley CW; Lin Z; Babcock JJ; McManus OB; Neubig RR Cell Signal; 2013 Dec; 25(12):2848-55. PubMed ID: 24041654 [TBL] [Abstract][Full Text] [Related]
3. Development of a novel high-throughput screen and identification of small-molecule inhibitors of the Gα-RGS17 protein-protein interaction using AlphaScreen. Mackie DI; Roman DL J Biomol Screen; 2011 Sep; 16(8):869-77. PubMed ID: 21680864 [TBL] [Abstract][Full Text] [Related]
5. Development of a bimolecular luminescence complementation assay for RGS: G protein interactions in cells. Bodle CR; Hayes MP; O'Brien JB; Roman DL Anal Biochem; 2017 Apr; 522():10-17. PubMed ID: 28115169 [TBL] [Abstract][Full Text] [Related]
6. Use of flow cytometric methods to quantify protein-protein interactions. Blazer LL; Roman DL; Muxlow MR; Neubig RR Curr Protoc Cytom; 2010 Jan; Chapter 13():Unit 13.11.1-15. PubMed ID: 20069525 [TBL] [Abstract][Full Text] [Related]
7. Screen Targeting Lung and Prostate Cancer Oncogene Identifies Novel Inhibitors of RGS17 and Problematic Chemical Substructures. Bodle CR; Schamp JH; O'Brien JB; Hayes MP; Wu M; Doorn JA; Roman DL SLAS Discov; 2018 Apr; 23(4):363-374. PubMed ID: 29351497 [TBL] [Abstract][Full Text] [Related]
8. Identification of small-molecule inhibitors of RGS4 using a high-throughput flow cytometry protein interaction assay. Roman DL; Talbot JN; Roof RA; Sunahara RK; Traynor JR; Neubig RR Mol Pharmacol; 2007 Jan; 71(1):169-75. PubMed ID: 17012620 [TBL] [Abstract][Full Text] [Related]
9. Yeast-based screening for inhibitors of RGS proteins. Young KH; Wang Y; Bender C; Ajit S; Ramirez F; Gilbert A; Nieuwenhuijsen BW Methods Enzymol; 2004; 389():277-301. PubMed ID: 15313572 [TBL] [Abstract][Full Text] [Related]
10. Identification of ligands targeting RGS proteins high-throughput screening and therapeutic potential. Roman DL Prog Mol Biol Transl Sci; 2009; 86():335-56. PubMed ID: 20374721 [TBL] [Abstract][Full Text] [Related]
11. Two Galpha(i1) rate-modifying mutations act in concert to allow receptor-independent, steady-state measurements of RGS protein activity. Zielinski T; Kimple AJ; Hutsell SQ; Koeff MD; Siderovski DP; Lowery RG J Biomol Screen; 2009 Dec; 14(10):1195-206. PubMed ID: 19820068 [TBL] [Abstract][Full Text] [Related]
12. Identification of Potential Modulators of the RGS7/Gβ5/R7BP Complex. Stoveken HM; Fernandez-Vega V; Muntean BS; Patil DN; Shumate J; Bannister TD; Scampavia L; Spicer TP; Martemyanov KA SLAS Discov; 2021 Oct; 26(9):1177-1188. PubMed ID: 34112017 [TBL] [Abstract][Full Text] [Related]
13. A high throughput screen for RGS proteins using steady state monitoring of free phosphate formation. Monroy CA; Mackie DI; Roman DL PLoS One; 2013; 8(4):e62247. PubMed ID: 23626793 [TBL] [Abstract][Full Text] [Related]
14. Differential Protein Dynamics of Regulators of G-Protein Signaling: Role in Specificity of Small-Molecule Inhibitors. Shaw VS; Mohammadiarani H; Vashisth H; Neubig RR J Am Chem Soc; 2018 Mar; 140(9):3454-3460. PubMed ID: 29460621 [TBL] [Abstract][Full Text] [Related]
15. RGS17: an emerging therapeutic target for lung and prostate cancers. Bodle CR; Mackie DI; Roman DL Future Med Chem; 2013 Jun; 5(9):995-1007. PubMed ID: 23734683 [TBL] [Abstract][Full Text] [Related]
16. "Disruptor" residues in the regulator of G protein signaling (RGS) R12 subfamily attenuate the inactivation of Gα subunits. Asli A; Sadiya I; Avital-Shacham M; Kosloff M Sci Signal; 2018 Jun; 11(534):. PubMed ID: 29895615 [TBL] [Abstract][Full Text] [Related]
17. Regulators of G-protein signaling and their Gα substrates: promises and challenges in their use as drug discovery targets. Kimple AJ; Bosch DE; Giguère PM; Siderovski DP Pharmacol Rev; 2011 Sep; 63(3):728-49. PubMed ID: 21737532 [TBL] [Abstract][Full Text] [Related]
18. Structural diversity in the RGS domain and its interaction with heterotrimeric G protein alpha-subunits. Soundararajan M; Willard FS; Kimple AJ; Turnbull AP; Ball LJ; Schoch GA; Gileadi C; Fedorov OY; Dowler EF; Higman VA; Hutsell SQ; Sundström M; Doyle DA; Siderovski DP Proc Natl Acad Sci U S A; 2008 Apr; 105(17):6457-62. PubMed ID: 18434541 [TBL] [Abstract][Full Text] [Related]
19. Assembly of high order G alpha q-effector complexes with RGS proteins. Shankaranarayanan A; Thal DM; Tesmer VM; Roman DL; Neubig RR; Kozasa T; Tesmer JJ J Biol Chem; 2008 Dec; 283(50):34923-34. PubMed ID: 18936096 [TBL] [Abstract][Full Text] [Related]
20. Identification of a small GTPase inhibitor using a high-throughput flow cytometry bead-based multiplex assay. Surviladze Z; Waller A; Wu Y; Romero E; Edwards BS; Wandinger-Ness A; Sklar LA J Biomol Screen; 2010 Jan; 15(1):10-20. PubMed ID: 20008126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]