BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19531804)

  • 1. The vitamin D sterol-vitamin D receptor ensemble model offers unique insights into both genomic and rapid-response signaling.
    Mizwicki MT; Norman AW
    Sci Signal; 2009 Jun; 2(75):re4. PubMed ID: 19531804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A perspective on how the Vitamin D sterol/Vitamin D receptor (VDR) conformational ensemble model can potentially be used to understand the structure-function results of A-ring modified Vitamin D sterols.
    Mizwicki MT; Bula CM; Bishop JE; Norman AW
    J Steroid Biochem Mol Biol; 2005 Oct; 97(1-2):69-82. PubMed ID: 16055325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into Vitamin D sterol-VDR proteolysis, allostery, structure-function from the perspective of a conformational ensemble model.
    Mizwicki MT; Bula CM; Bishop JE; Norman AW
    J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):243-62. PubMed ID: 17368177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of the Vitamin D sterol-Vitamin D receptor (VDR) conformational ensemble model.
    Mizwicki MT; Bishop JE; Norman AW
    Steroids; 2005; 70(5-7):464-71. PubMed ID: 15862832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of an alternative ligand-binding pocket in the nuclear vitamin D receptor and its functional importance in 1alpha,25(OH)2-vitamin D3 signaling.
    Mizwicki MT; Keidel D; Bula CM; Bishop JE; Zanello LP; Wurtz JM; Moras D; Norman AW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12876-81. PubMed ID: 15326291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minireview: vitamin D receptor: new assignments for an already busy receptor.
    Norman AW
    Endocrinology; 2006 Dec; 147(12):5542-8. PubMed ID: 16946007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)₂vitamin D₃: genomic and non-genomic mechanisms.
    Haussler MR; Jurutka PW; Mizwicki M; Norman AW
    Best Pract Res Clin Endocrinol Metab; 2011 Aug; 25(4):543-59. PubMed ID: 21872797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A-ring analogues of 1, 25-(OH)2D3 with low affinity for the vitamin D receptor modulate chondrocytes via membrane effects that are dependent on cell maturation.
    Greising DM; Schwartz Z; Posner GH; Sylvia VL; Dean DD; Boyan BD
    J Cell Physiol; 1997 Jun; 171(3):357-67. PubMed ID: 9180905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin D receptor signaling and its therapeutic implications: Genome-wide and structural view.
    Carlberg C; Molnár F
    Can J Physiol Pharmacol; 2015 May; 93(5):311-8. PubMed ID: 25741777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1 alpha,25(OH)2-vitamin D3 in vivo and in vitro.
    Huhtakangas JA; Olivera CJ; Bishop JE; Zanello LP; Norman AW
    Mol Endocrinol; 2004 Nov; 18(11):2660-71. PubMed ID: 15272054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1,25(OH)2-vitamin D3 induces translocation of the vitamin D receptor (VDR) to the plasma membrane in skeletal muscle cells.
    Capiati D; Benassati S; Boland RL
    J Cell Biochem; 2002; 86(1):128-35. PubMed ID: 12112023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular description of ligand binding to the two overlapping binding pockets of the nuclear vitamin D receptor (VDR): structure-function implications.
    Mizwicki MT; Menegaz D; Yaghmaei S; Henry HL; Norman AW
    J Steroid Biochem Mol Biol; 2010 Jul; 121(1-2):98-105. PubMed ID: 20398762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of receptor topology in the vitamin D3 uptake and Ca(2+) response systems.
    Morrill GA; Kostellow AB; Gupta RK
    Biochem Biophys Res Commun; 2016 Sep; 477(4):834-840. PubMed ID: 27369077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resveratrol potentiates vitamin D and nuclear receptor signaling.
    Dampf Stone A; Batie SF; Sabir MS; Jacobs ET; Lee JH; Whitfield GK; Haussler MR; Jurutka PW
    J Cell Biochem; 2015 Jun; 116(6):1130-43. PubMed ID: 25536521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nongenomic and genomic effects of 1α,25(OH)2 vitamin D3 in rat testis.
    Zanatta L; Zamoner A; Zanatta AP; Bouraïma-Lelong H; Delalande C; Bois C; Carreau S; Silva FR
    Life Sci; 2011 Oct; 89(15-16):515-23. PubMed ID: 21565203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different shapes of the steroid hormone 1alpha,25(OH)(2)-vitamin D(3) act as agonists for two different receptors in the vitamin D endocrine system to mediate genomic and rapid responses.
    Norman AW; Henry HL; Bishop JE; Song XD; Bula C; Okamura WH
    Steroids; 2001; 66(3-5):147-58. PubMed ID: 11179722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What do we learn from the genome-wide perspective on vitamin D3?
    Carlberg C
    Anticancer Res; 2015 Feb; 35(2):1143-51. PubMed ID: 25667505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid structural analogues of 1,25-(OH)2D3 regulate chondrocyte proliferation and proteoglycan production as well as protein kinase C through a nongenomic pathway.
    Boyan BD; Posner GH; Greising DM; White MC; Sylvia VL; Dean DD; Schwartz Z
    J Cell Biochem; 1997 Sep; 66(4):457-70. PubMed ID: 9282324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligands for the vitamin D endocrine system: different shapes function as agonists and antagonists for genomic and rapid response receptors or as a ligand for the plasma vitamin D binding protein.
    Norman AW; Ishizuka S; Okamura WH
    J Steroid Biochem Mol Biol; 2001; 76(1-5):49-59. PubMed ID: 11384863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of functional vitamin D(3) receptor conformations on DNA-dependent vitamin D(3) signaling.
    Quack M; Carlberg C
    Mol Pharmacol; 2000 Feb; 57(2):375-84. PubMed ID: 10648648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.