These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19531847)

  • 1. The generation of simple compliance boundaries for mobile communication base station antennas using formulae for SAR estimation.
    Thors B; Hansson B; Törnevik C
    Phys Med Biol; 2009 Jul; 54(13):4243-56. PubMed ID: 19531847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antenna modeling considerations for accurate SAR calculations in human phantoms in close proximity to GSM cellular base station antennas.
    van Wyk MJ; Bingle M; Meyer FJ
    Bioelectromagnetics; 2005 Sep; 26(6):502-9. PubMed ID: 15931680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dosimetric analysis of the carousel setup for the exposure of rats at 1.62 GHz.
    Schönborn F; Poković K; Kuster N
    Bioelectromagnetics; 2004 Jan; 25(1):16-26. PubMed ID: 14696049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of safety distance limits for a human near a cellular base station antenna, adopting the IEEE standard or ICNIRP guidelines.
    Cooper J; Marx B; Buhl J; Hombach V
    Bioelectromagnetics; 2002 Sep; 23(6):429-43. PubMed ID: 12210561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FDTD calculation of whole-body average SAR in adult and child models for frequencies from 30 MHz to 3 GHz.
    Wang J; Fujiwara O; Kodera S; Watanabe S
    Phys Med Biol; 2006 Sep; 51(17):4119-27. PubMed ID: 16912372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the safety assessment of human exposure in the proximity of cellular communications base-station antennas at 900, 1800 and 2170 MHz.
    Martínez-Búrdalo M; Martín A; Anguiano M; Villar R
    Phys Med Biol; 2005 Sep; 50(17):4125-37. PubMed ID: 16177535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the effect of mobile phone base station antenna loading on localized SAR and its consequences for measurements.
    Hansson B; Thors B; Törnevik C
    Bioelectromagnetics; 2011 Dec; 32(8):664-72. PubMed ID: 21647933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific absorption rate and electric field measurements in the near field of six mobile phone base station antennas.
    Toivonen T; Toivo T; Puranen L; Jokela K
    Bioelectromagnetics; 2009 May; 30(4):307-12. PubMed ID: 19194889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radio frequency electromagnetic field compliance assessment of multi-band and MIMO equipped radio base stations.
    Thors B; Thielens A; Fridén J; Colombi D; Törnevik C; Vermeeren G; Martens L; Joseph W
    Bioelectromagnetics; 2014 May; 35(4):296-308. PubMed ID: 24523232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compliance boundaries for multiple-frequency base station antennas in three directions.
    Thielens A; Vermeeren G; Kurup D; Joseph W; Martens L
    Bioelectromagnetics; 2013 Sep; 34(6):465-78. PubMed ID: 23361516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the radio-frequency electromagnetic fields induced in the human body from mobile phones used with hands-free kits.
    Kühn S; Cabot E; Christ A; Capstick M; Kuster N
    Phys Med Biol; 2009 Sep; 54(18):5493-508. PubMed ID: 19706964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human exposure assessment in the near field of GSM base-station antennas using a hybrid finite element/method of moments technique.
    Meyer FJ; Davidson DB; Jakobus U; Stuchly MA
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):224-33. PubMed ID: 12665036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initial analysis of SAR from a cell phone inside a vehicle by numerical computation.
    Anzaldi G; Silva F; Fernández M; Quílez M; Riu PJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):921-30. PubMed ID: 17518290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between peak spatial-average SAR and temperature increase due to antennas attached to human trunk.
    Hirata A; Fujiwara O; Shiozawa T
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1658-64. PubMed ID: 16916100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dosimetric comparison between different quantities for limiting exposure in the RF band: rationale and implications for guidelines.
    Lin JC
    Health Phys; 2007 Jun; 92(6):547-53. PubMed ID: 17495655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exposure assessment in front of a multi-band base station antenna.
    Kos B; Valič B; Kotnik T; Gajšek P
    Bioelectromagnetics; 2011 Apr; 32(3):234-42. PubMed ID: 21365667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dominant factors influencing whole-body average SAR due to far-field exposure in whole-body resonance frequency and GHz regions.
    Hirata A; Kodera S; Wang J; Fujiwara O
    Bioelectromagnetics; 2007 Sep; 28(6):484-7. PubMed ID: 17486582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of finite-difference time-domain resolution and power-loss computation method on SAR values in plane-wave exposure of Zubal phantom.
    Uusitupa TM; Ilvonen SA; Laakso IM; Nikoskinen KI
    Phys Med Biol; 2008 Jan; 53(2):445-52. PubMed ID: 18184998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intercomparison of whole-body averaged SAR in European and Japanese voxel phantoms.
    Dimbylow PJ; Hirata A; Nagaoka T
    Phys Med Biol; 2008 Oct; 53(20):5883-97. PubMed ID: 18827316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of the reflective environment on the absorption of a human male exposed to representative base station antennas from 300 MHz to 5 GHz.
    Vermeeren G; Gosselin MC; Kühn S; Kellerman V; Hadjem A; Gati A; Joseph W; Wiart J; Meyer F; Kuster N; Martens L
    Phys Med Biol; 2010 Sep; 55(18):5541-55. PubMed ID: 20808028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.