These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 19532189)

  • 1. Interaction between non-Bragg band gaps in 1D metamaterial photonic crystals.
    Monsoriu JA; Depine RA; Martínez-Ricci ML; Silvestre E
    Opt Express; 2006 Dec; 14(26):12958-67. PubMed ID: 19532189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Band structures of one-dimensional subwavelength photonic crystals containing metamaterials.
    Weng Y; Wang ZG; Chen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046601. PubMed ID: 17501001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enlargement of zero averaged refractive index gaps in the photonic heterostructures containing negative-index materials.
    Xiang Y; Dai X; Wen S; Fan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056604. PubMed ID: 18233779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. m-bonacci metamaterial multilayers: location of the zero-average index bandgap edges.
    Monsoriu JA; Depine RA; Martínez-Ricci ML; Silvestre E; Andrés P
    Opt Lett; 2009 Oct; 34(20):3172-4. PubMed ID: 19838263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.
    Marichy C; Muller N; Froufe-Pérez LS; Scheffold F
    Sci Rep; 2016 Feb; 6():21818. PubMed ID: 26911540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase diagram for the transition from photonic crystals to dielectric metamaterials.
    Rybin MV; Filonov DS; Samusev KB; Belov PA; Kivshar YS; Limonov MF
    Nat Commun; 2015 Dec; 6():10102. PubMed ID: 26626302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete band gaps in one-dimensional left-handed periodic structures.
    Shadrivov IV; Sukhorukov AA; Kivshar YS
    Phys Rev Lett; 2005 Nov; 95(19):193903. PubMed ID: 16383980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic band gap from a stack of positive and negative index materials.
    Li J; Zhou L; Chan CT; Sheng P
    Phys Rev Lett; 2003 Feb; 90(8):083901. PubMed ID: 12633427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplication of photonic band gaps in one-dimensional photonic crystals by using hyperbolic metamaterial in IR range.
    Mohamed AG; Sabra W; Mehaney A; Aly AH; Elsayed HA
    Sci Rep; 2023 Jan; 13(1):324. PubMed ID: 36609630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of one-dimensional photonic crystals containing single-negative materials.
    Jiang H; Chen H; Li H; Zhang Y; Zi J; Zhu S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066607. PubMed ID: 15244764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zero-(n) non-Bragg gap plasmon-polariton modes and omni-reflectance in 1D metamaterial photonic superlattices.
    Agudelo-Arango C; Mejía-Salazar JR; Porras-Montenegro N; Reyes-Gómez E; Oliveira LE
    J Phys Condens Matter; 2011 Jun; 23(21):215003. PubMed ID: 21555838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Etched distributed Bragg reflectors as three-dimensional photonic crystals: photonic bands and density of states.
    Pavarini E; Andreani LC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036602. PubMed ID: 12366275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials.
    Bria D; Djafari-Rouhani B; Akjouj A; Dobrzynski L; Vigneron JP; El-Boudouti EH; Nougaoui A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066613. PubMed ID: 15244770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning band structures of photonic multilayers with positive and negative refractive index materials according to generalized Fibonacci and Thue-Morse sequences.
    Silva BP; Costa CH
    J Phys Condens Matter; 2020 Mar; 32(13):135703. PubMed ID: 31801114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous omnidirectional zero-n¯ and zero-ϕeff non-Bragg gaps in metamaterial-polaritonic photonic superlattices.
    Moncada-Villa E; Mejía-Salazar JR; Granada JC
    Opt Lett; 2015 May; 40(10):2345-8. PubMed ID: 26393735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional resonating metamaterials for low-frequency vibration attenuation.
    Elmadih W; Chronopoulos D; Syam WP; Maskery I; Meng H; Leach RK
    Sci Rep; 2019 Aug; 9(1):11503. PubMed ID: 31395897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-Demand Design of Tunable Complete Photonic Band Gaps based on Bloch Mode Analysis.
    Li S; Lin H; Meng F; Moss D; Huang X; Jia B
    Sci Rep; 2018 Sep; 8(1):14283. PubMed ID: 30250273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full Polarization Conical Dispersion and Zero-Refractive-Index in Two-Dimensional Photonic Hypercrystals.
    Wang JR; Chen XD; Zhao FL; Dong JW
    Sci Rep; 2016 Mar; 6():22739. PubMed ID: 26956377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromagnetic parameter retrieval from inhomogeneous metamaterials.
    Smith DR; Vier DC; Koschny T; Soukoulis CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036617. PubMed ID: 15903615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic crystal topological design for polarized and polarization-independent band gaps by gradient-free topology optimization.
    Yan Y; Liu P; Zhang X; Luo Y
    Opt Express; 2021 Aug; 29(16):24861-24883. PubMed ID: 34614832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.