These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 19532245)

  • 1. Chaotic communication in radio-over-fiber transmission based on optoelectronic feedback semiconductor lasers.
    Lin FY; Tsai MC
    Opt Express; 2007 Jan; 15(2):302-11. PubMed ID: 19532245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaos-based wireless communication resisting multipath effects.
    Yao JL; Li C; Ren HP; Grebogi C
    Phys Rev E; 2017 Sep; 96(3-1):032226. PubMed ID: 29347054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scheme of coherent optical chaos communication.
    Wang L; Mao X; Wang A; Wang Y; Gao Z; Li S; Yan L
    Opt Lett; 2020 Sep; 45(17):4762-4765. PubMed ID: 32870851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal-to-noise ratio degradation analysis for optoelectronic feedback-based chaotic optical communication systems.
    Xie Y; Yang Z; Shi M; Hu W; Yi L
    Opt Lett; 2023 Oct; 48(19):5005-5008. PubMed ID: 37773371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-haul dense wavelength division multiplexing between a chaotic optical secure channel and a conventional fiber-optic channel.
    Zhao Q; Yin H; Chen X
    Appl Opt; 2012 Aug; 51(22):5585-90. PubMed ID: 22859052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous trilateral communication based on three mutually coupled chaotic semiconductor lasers with optical feedback.
    Li Q; Lu S; Bao Q; Chen D; Hu M; Zeng R; Yang G; Li S
    Appl Opt; 2018 Jan; 57(2):251-257. PubMed ID: 29328172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaos-based communications at high bit rates using commercial fibre-optic links.
    Argyris A; Syvridis D; Larger L; Annovazzi-Lodi V; Colet P; Fischer I; García-Ojalvo J; Mirasso CR; Pesquera L; Shore KA
    Nature; 2005 Nov; 438(7066):343-6. PubMed ID: 16292256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Point-to-multipoint and ring network communication based on chaotic semiconductor lasers with optical feedback.
    Li Q; Bao Q; Chen D; Yang S; Hu M; Zeng R; Chi H; Li S
    Appl Opt; 2019 Feb; 58(4):1025-1032. PubMed ID: 30874150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital signal transmission with cascaded heterogeneous chaotic systems.
    Murali K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016217. PubMed ID: 11304345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid electronic/optical synchronized chaos communication system.
    Toomey JP; Kane DM; Davidović A; Huntington EH
    Opt Express; 2009 Apr; 17(9):7556-61. PubMed ID: 19399134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiconductor lasers driven by self-sustained chaotic electronic oscillators and applications to optical chaos cryptography.
    Kingni ST; Mbé JH; Woafo P
    Chaos; 2012 Sep; 22(3):033108. PubMed ID: 23020447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-optical frequency downconversion technique utilizing a four-wave mixing effect in a single semiconductor optical amplifier for wavelength division multiplexing radio-over-fiber applications.
    Kim HJ; Song JI
    Opt Express; 2012 Mar; 20(7):8047-54. PubMed ID: 22453476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Gbit/s optical phase chaos communications using a time-delayed optoelectronic oscillator with a three-wave interferometer nonlinearity.
    Oden J; Lavrov R; Chembo YK; Larger L
    Chaos; 2017 Nov; 27(11):114311. PubMed ID: 29195337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcarrier modulation in all-optical chaotic communication systems.
    Bogris A; Chlouverakis KE; Argyris A; Syvridis D
    Opt Lett; 2007 Aug; 32(15):2134-6. PubMed ID: 17671561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trading off security and practicability to explore high-speed and long-haul chaotic optical communication.
    Jiang L; Pan Y; Yi A; Feng J; Pan W; Yi L; Hu W; Wang A; Wang Y; Qin Y; Yan L
    Opt Express; 2021 Apr; 29(8):12750-12762. PubMed ID: 33985025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Message encoding and decoding using an asynchronous chaotic laser diode transmitter-receiver array.
    Ebisawa S; Komatsu S
    Appl Opt; 2007 Jul; 46(20):4386-96. PubMed ID: 17579693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bandwidth-enhanced chaos synchronization in strongly injection-locked semiconductor lasers with optical feedback.
    Takiguchi Y; Ohyagi K; Ohtsubo J
    Opt Lett; 2003 Mar; 28(5):319-21. PubMed ID: 12659431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid chaos-based communication system consisting of three chaotic semiconductor ring lasers.
    Li N; Pan W; Xiang S; Luo B; Yan L; Zou X
    Appl Opt; 2013 Mar; 52(7):1523-30. PubMed ID: 23458808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analog-digital hybrid chaos-based long-haul coherent optical secure communication.
    Fu Y; Cheng M; Shao W; Luo H; Li D; Deng L; Yang Q; Liu D
    Opt Lett; 2021 Apr; 46(7):1506-1509. PubMed ID: 33793476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probabilistic shaping based constellation encryption for physical layer security in OFDM RoF system.
    Wang Z; Xiao Y; Wang S; Yan Y; Wang B; Chen Y; Zhou Z; He J; Yang L
    Opt Express; 2021 Jun; 29(12):17890-17901. PubMed ID: 34154061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.