These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 19532273)

  • 1. Fast adaptive interferometer on dynamic reflection hologram in CdTe:V.
    Di Girolamo S; Kamshilin AA; Romashko RV; Kulchin YN; Launay JC
    Opt Express; 2007 Jan; 15(2):545-55. PubMed ID: 19532273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fiber sensors multiplexing using vectorial wave mixing in a photorefractive crystal.
    Di Girolamo S; Romashko RV; Kulchin YN; Claude-Launay J; Kamshilin AA
    Opt Express; 2008 Oct; 16(22):18040-9. PubMed ID: 18958083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensing of multimode-fiber strain by a dynamic photorefractive hologram.
    Di Girolamo S; Kamshilin AA; Romashko RV; Kulchin YN; Launay JC
    Opt Lett; 2007 Jul; 32(13):1821-3. PubMed ID: 17603581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast adaptive interferometer with a photorefractive GaP crystal.
    Kamshilin AA; Prokofiev V
    Opt Lett; 2002 Oct; 27(19):1711-3. PubMed ID: 18033344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of two-wave mixing adaptive interferometer with CdTe:Ge at 1.06 and 1.55 μm and improved temporal adaptability with temperature control.
    Shcherbin K; Danylyuk V; Klein M
    Appl Opt; 2013 Apr; 52(12):2729-34. PubMed ID: 23669683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time holographic interferometry with double two-wave mixing in photorefractive crystals.
    Cedilnik G; Esselbach M; Kiessling A; Kowarschik R
    Appl Opt; 2000 May; 39(13):2091-100. PubMed ID: 18345112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared sensitive two-wave mixing adaptive interferometer based on a liquid crystal light valve with a semiconductor substrate.
    Shcherbin K; Gvozdovskyy I; Shumelyuk A; Slagle J; Evans DR
    Appl Opt; 2022 Aug; 61(22):6498-6503. PubMed ID: 36255873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High photorefractive gain at counterpropagating geometry in CdTe:Ge at 1.064 microm and 1.55 microm.
    Shcherbin K
    Appl Opt; 2009 Jan; 48(2):371-4. PubMed ID: 19137049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic holographic interferometry by photorefractive crystals for quantitative deformation measurements.
    Pouet B; Krishnaswamy S
    Appl Opt; 1996 Feb; 35(5):787-94. PubMed ID: 21069069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double phase-conjugate mirror using a photorefractive Bi(12)TiO(20) crystal.
    Petrov MP; Sochava SL; Stepanov SI
    Opt Lett; 1989 Mar; 14(5):284-6. PubMed ID: 19749896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of recording-erasure dynamics of storage capacity of a wavelength-multiplexed reflection-type photorefractive hologram.
    Zhou H; Zhao F; Yu FT
    Appl Opt; 1994 Jul; 33(20):4339-44. PubMed ID: 20935791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation of Bragg condition in low-glass-transition photorefractive polymers when recorded in reflection geometry.
    Eralp M; Thomas J; Tay S; Blanche PA; Schülzgen A; Norwood RA; Yamamoto M; Peyghambarian N
    Opt Express; 2007 Sep; 15(18):11622-8. PubMed ID: 19547522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffraction properties of a reflection photorefractive hologram.
    Zhou H; Zhao F; Yu FT
    Appl Opt; 1994 Jul; 33(20):4345-52. PubMed ID: 20935792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffractive properties of volume phase gratings in photorefractive sillenite crystals of arbitrary cut under the influence of an external electric field.
    Deliolanis NC; Kourmoulis IM; Apostolidis AG; Vanidhis ED; Papazoglou DG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056602. PubMed ID: 14682901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidirectional vectorial light amplification in cubic crystals with unshifted photorefractive gratings.
    Rocha-Mendoza I; Khomenko AV
    Opt Lett; 2002 Aug; 27(16):1448-50. PubMed ID: 18026475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the sensitivity of an adaptive holographic interferometer using non-Bragg diffraction orders.
    Petrov V; Denz C; Petter J; Tschudi T
    Opt Lett; 1997 Dec; 22(24):1902-4. PubMed ID: 18188402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of vectorial diffraction in optical systems.
    Kim J; Wang Y; Zhang X
    J Opt Soc Am A Opt Image Sci Vis; 2018 Apr; 35(4):526-535. PubMed ID: 29603981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new balanced-path heterodyne I/Q-interferometer scheme for low environmental noise, high sensitivity phase measurements for both reflection and transmission geometry.
    Yoon S; Park Y; Cho K
    Opt Express; 2013 Sep; 21(18):20722-9. PubMed ID: 24103945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layered photoconductive polymers: anisotropic morphology and correlation with photorefractive reflection grating response.
    Kwon OP; Kwon SJ; Jazbinsek M; Günter P; Lee SH
    J Chem Phys; 2006 Mar; 124(10):104705. PubMed ID: 16542095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic field structure simulation in quasi-collinear acousto-optic cells with ultrasound beam reflection.
    Mantsevich SN; Molchanov VY; Yushkov KB; Khorkin VS; Kupreychik MI
    Ultrasonics; 2017 Jul; 78():175-184. PubMed ID: 28395212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.