These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 19532362)

  • 21. Generation of time-bin entangled photon pairs by cascaded second-order nonlinearity in a single periodically poled LiNbO(3) waveguide.
    Hunault M; Takesue H; Tadanaga O; Nishida Y; Asobe M
    Opt Lett; 2010 Apr; 35(8):1239-41. PubMed ID: 20410979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode.
    Yan Z; Hamel DR; Heinrichs AK; Jiang X; Itzler MA; Jennewein T
    Rev Sci Instrum; 2012 Jul; 83(7):073105. PubMed ID: 22852669
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum correlation of fiber-based telecom-band photon pairs through standard loss and random media.
    Sua YM; Malowicki J; Lee KF
    Opt Lett; 2014 Aug; 39(16):4808-11. PubMed ID: 25121880
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drop-in compatible entanglement for optical-fiber networks.
    Hall MA; Altepeter JB; Kumar P
    Opt Express; 2009 Aug; 17(17):14558-66. PubMed ID: 19687935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resolving Photon Numbers Using a Superconducting Nanowire with Impedance-Matching Taper.
    Zhu D; Colangelo M; Chen C; Korzh BA; Wong FNC; Shaw MD; Berggren KK
    Nano Lett; 2020 May; 20(5):3858-3863. PubMed ID: 32271591
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-photon quantum interference and entanglement at 2.1 μm.
    Prabhakar S; Shields T; Dada AC; Ebrahim M; Taylor GG; Morozov D; Erotokritou K; Miki S; Yabuno M; Terai H; Gawith C; Kues M; Caspani L; Hadfield RH; Clerici M
    Sci Adv; 2020 Mar; 6(13):eaay5195. PubMed ID: 32258399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-brightness, low-noise, all-fiber photon pair source.
    Dyer SD; Baek B; Nam SW
    Opt Express; 2009 Jun; 17(12):10290-7. PubMed ID: 19506682
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generation of high-purity entangled photon pairs using silicon wire waveguide.
    Harada K; Takesue H; Fukuda H; Tsuchizawa T; Watanabe T; Yamada K; Tokura Y; Itabashi S
    Opt Express; 2008 Dec; 16(25):20368-73. PubMed ID: 19065174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip.
    Schuck C; Guo X; Fan L; Ma X; Poot M; Tang HX
    Nat Commun; 2016 Jan; 7():10352. PubMed ID: 26792424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer.
    Li Y; Zhou ZY; Ding DS; Shi BS
    Opt Express; 2015 Nov; 23(22):28792-800. PubMed ID: 26561148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metasurface interferometry toward quantum sensors.
    Georgi P; Massaro M; Luo KH; Sain B; Montaut N; Herrmann H; Weiss T; Li G; Silberhorn C; Zentgraf T
    Light Sci Appl; 2019; 8():70. PubMed ID: 31645918
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extracting an entangled photon pair from collectively decohered pairs at a telecommunication wavelength.
    Tsujimoto Y; Sugiura Y; Ando M; Katsuse D; Ikuta R; Yamamoto T; Koashi M; Imoto N
    Opt Express; 2015 May; 23(10):13545-53. PubMed ID: 26074602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A semiconductor source of triggered entangled photon pairs.
    Stevenson RM; Young RJ; Atkinson P; Cooper K; Ritchie DA; Shields AJ
    Nature; 2006 Jan; 439(7073):179-82. PubMed ID: 16407947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Poled-fiber source of broadband polarization-entangled photon pairs.
    Zhu EY; Tang Z; Qian L; Helt LG; Liscidini M; Sipe JE; Corbari C; Canagasabey A; Ibsen M; Kazansky PG
    Opt Lett; 2013 Nov; 38(21):4397-400. PubMed ID: 24177103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-photon interference of polarization-entangled photons in a Franson interferometer.
    Kim H; Lee SM; Kwon O; Moon HS
    Sci Rep; 2017 Jul; 7(1):5772. PubMed ID: 28720885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of 10-GHz clock sequential time-bin entanglement.
    Zhang Q; Langrock C; Takesue H; Xie X; Fejer M; Yamamoto Y
    Opt Express; 2008 Mar; 16(5):3293-8. PubMed ID: 18542417
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of two-photon polarization mixed states generated from entangled-classical hybrid photon source.
    Kumano H; Matsuda K; Ekuni S; Sasakura H; Suemune I
    Opt Express; 2011 Jul; 19(15):14249-59. PubMed ID: 21934789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-fidelity entanglement swapping and generation of three-qubit GHZ state using asynchronous telecom photon pair sources.
    Tsujimoto Y; Tanaka M; Iwasaki N; Ikuta R; Miki S; Yamashita T; Terai H; Yamamoto T; Koashi M; Imoto N
    Sci Rep; 2018 Jan; 8(1):1446. PubMed ID: 29362372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots.
    Zhang J; Wildmann JS; Ding F; Trotta R; Huo Y; Zallo E; Huber D; Rastelli A; Schmidt OG
    Nat Commun; 2015 Dec; 6():10067. PubMed ID: 26621073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polarization entanglement generation at 1.5 μm based on walk-off effect due to fiber birefringence.
    Zhou Q; Zhang W; Wang P; Huang Y; Peng J
    Opt Lett; 2012 May; 37(10):1679-81. PubMed ID: 22627535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.