These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19532385)

  • 1. Atmospheric dispersion compensation for extremely large telescopes.
    Goncharov AV; Devaney N; Dainty C
    Opt Express; 2007 Feb; 15(4):1534-42. PubMed ID: 19532385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The achromatic design of an atmospheric dispersion corrector for extremely large telescopes.
    Bahrami M; Goncharov AV
    Opt Express; 2011 Aug; 19(18):17099-113. PubMed ID: 21935071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bringing the visible universe into focus with Robo-AO.
    Baranec C; Riddle R; Law NM; Ramaprakash AN; Tendulkar SP; Bui K; Burse MP; Chordia P; Das HK; Davis JT; Dekany RG; Kasliwal MM; Kulkarni SR; Morton TD; Ofek EO; Punnadi S
    J Vis Exp; 2013 Feb; (72):. PubMed ID: 23426078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep turbulence effects compensation experiments with a cascaded adaptive optics system using a 3.63 m telescope.
    Vorontsov M; Riker J; Carhart G; Gudimetla VS; Beresnev L; Weyrauch T; Roberts LC
    Appl Opt; 2009 Jan; 48(1):A47-57. PubMed ID: 19107154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical design and intensity interferometry simulations in support of the Kilometer Space Telescope.
    Johnson TP; Crowe DG
    Appl Opt; 2021 Apr; 60(12):3464-3473. PubMed ID: 33983253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized optical system with a 1.65  m wide-field corrector for the 6.5  m high-performance MUltiplexed Survey Telescope.
    Zhang Y; Bian Q; Guo L; Shectman S; Tian Z; Huang J; Xu C; Cai Z; Huang S; Lu L; Zheng Y; Mao S; Huang L
    Appl Opt; 2024 Jun; 63(16):4284-4292. PubMed ID: 38856604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a prototype active optics system for future space telescopes.
    Devaney N; Kenny F; Goncharov AV; Goy M; Reinlein C
    Appl Opt; 2018 Aug; 57(22):E101-E106. PubMed ID: 30117927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subaru Telescope -History, active/adaptive optics, instruments, and scientific achievements.
    Iye M
    Proc Jpn Acad Ser B Phys Biol Sci; 2021; 97(7):337-370. PubMed ID: 34380914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active optics and modified-Rumsey wide-field telescopes: MINITRUST demonstrators with vase- and tulip-form mirrors.
    Lemaître GR; Montiel P; Joulié P; Dohlen K; Lanzoni P
    Appl Opt; 2005 Dec; 44(34):7322-32. PubMed ID: 16353802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient reconstruction method for ground layer adaptive optics with mixed natural and laser guide stars.
    Wagner R; Helin T; Obereder A; Ramlau R
    Appl Opt; 2016 Feb; 55(6):1421-9. PubMed ID: 26906596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Very high-resolution spectroscopy for extremely large telescopes using pupil slicing and adaptive optics.
    Beckers JM; Andersen TE; Owner-Petersen M
    Opt Express; 2007 Mar; 15(5):1983-94. PubMed ID: 19532437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging performance analysis of adaptive optical telescopes using laser guide stars.
    Welsh BM
    Appl Opt; 1991 Dec; 30(34):5021-30. PubMed ID: 20717316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors.
    Devaney N; Dalimier E; Farrell T; Coburn D; Mackey R; Mackey D; Laurent F; Daly E; Dainty C
    Appl Opt; 2008 Dec; 47(35):6550-62. PubMed ID: 19079464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superresolution in compensated telescopes.
    Canales VF; de Juana DM; Cagigal MP
    Opt Lett; 2004 May; 29(9):935-7. PubMed ID: 15143632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DM/LCWFC based adaptive optics system for large aperture telescopes imaging from visible to infrared waveband.
    Sun F; Cao Z; Wang Y; Zhang C; Zhang X; Liu Y; Mu Q; Xuan L
    Opt Express; 2016 Nov; 24(24):27494-27508. PubMed ID: 27906321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the performance of interferometric imaging through the use of disturbance feedforward.
    Böhm M; Glück M; Keck A; Pott JU; Sawodny O
    J Opt Soc Am A Opt Image Sci Vis; 2017 May; 34(5):A10-A21. PubMed ID: 28463330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Static and dynamic disturbance compensation for optical misalignment of large ground-based wide field survey telescope.
    Cao Y; Wang J; Fan W; Wang Z; Wang H; Liu Y; Wang F; Li H; Xu W
    Appl Opt; 2022 May; 61(13):3566-3578. PubMed ID: 36256394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research on the compensation of laser launch optics to improve the performance of the LGS spot.
    Liu J; Wang J; Wang Y; Tian D; Zheng Q; Lin X; Wang L; Yang Q
    Appl Opt; 2018 Feb; 57(4):648-651. PubMed ID: 29400724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slewing Mirror Telescope optics for the early observation of UV/optical photons from Gamma-Ray Bursts.
    Jeong S; Nam JW; Ahn KB; Park IH; Kim SW; Lee J; Lim H; Brandt S; Budtz-Jørgensen C; Castro-Tirado AJ; Chen P; Cho MH; Choi JN; Grossan B; Huang MA; Jung A; Kim JE; Kim MB; Kim YW; Linder EV; Min KW; Na GW; Panasyuk MI; Ripa J; Reglero V; Smoot GF; Suh JE; Svertilov S; Vedenkin N; Yashin I
    Opt Express; 2013 Jan; 21(2):2263-78. PubMed ID: 23389206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive-optics performance of Antarctic telescopes.
    Lawrence JS
    Appl Opt; 2004 Feb; 43(6):1435-49. PubMed ID: 15008551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.