These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 19532415)

  • 21. Compensation of SOA-induced nonlinear phase distortions by optical phase conjugation.
    Sobhanan A; Pelusi M; Inoue T; Venkitesh D; Namiki S
    Opt Express; 2021 Apr; 29(8):12252-12265. PubMed ID: 33984989
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrahigh-speed all-optical half adder based on four-wave mixing in semiconductor optical amplifier.
    Li PL; Huang DX; Zhang XL; Zhu GX
    Opt Express; 2006 Nov; 14(24):11839-47. PubMed ID: 19529607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polarization-insensitive phase conjugation using single pump Bragg-scattering four-wave mixing in semiconductor optical amplifiers.
    Sobhanan A; Venkitesh D
    Opt Express; 2018 Sep; 26(18):22761-22772. PubMed ID: 30184931
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonlinear gain amplification due to two-wave mixing in a broad-area semiconductor amplifier with moving gratings.
    Chi M; Huignard JP; Petersen PM
    Opt Express; 2008 Apr; 16(8):5565-71. PubMed ID: 18542659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. All-optical frequency upconversion for radio-over-fiber applications based on cross-gain modulation and cross-polarization modulation in a semiconductor optical amplifier.
    Li W; Sun WH; Wang WT; Zhu NH
    Opt Lett; 2014 May; 39(9):2672-5. PubMed ID: 24784074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. All-optical differentiator based on cross-gain modulation in semiconductor optical amplifier.
    Xu J; Zhang X; Dong J; Liu D; Huang D
    Opt Lett; 2007 Oct; 32(20):3029-31. PubMed ID: 17938689
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Femtosecond gain and index dynamics in an InAs/InGaAsP quantum dot amplifier operating at 1.55 microm.
    Zilkie AJ; Meier J; Smith PW; Mojahedi M; Aitchison JS; Poole PJ; Allen CN; Barrios P; Poitras D
    Opt Express; 2006 Nov; 14(23):11453-9. PubMed ID: 19529563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Demonstration of an all-optical feed-forward delay line buffer using the quadratic Stark effect and two-photon absorption in an SOA.
    Soto H; Tong MA; Domínguez JC; Muraoka R
    Opt Express; 2017 Sep; 25(18):22066-22081. PubMed ID: 29041496
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gain recovery in a quantum dot semiconductor optical amplifier and corresponding pattern effects in amplified optical signals at 1.5 μm.
    Park J; Jang YD; Baek JS; Kim NJ; Yee KJ; Lee H; Lee D; Pyun SH; Jeong WG; Kim J
    Opt Express; 2012 Mar; 20(6):6215-24. PubMed ID: 22418504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amplification of advanced modulation formats with a semiconductor optical amplifier cascade.
    Koenig S; Bonk R; Schmuck H; Poehlmann W; Pfeiffer T; Koos C; Freude W; Leuthold J
    Opt Express; 2014 Jul; 22(15):17854-71. PubMed ID: 25089406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 10 Gbps WDM transmission performance limits using in-line SOAs and an optical phase conjugator based on four-wave mixing in SOAs as a mid-span spectral inversion technique.
    Hur S; Kim Y; Jang H; Jeong J
    Opt Express; 2006 May; 14(11):4589-600. PubMed ID: 19516612
    [TBL] [Abstract][Full Text] [Related]  

  • 32. All-optical 1st- and 2nd-order differential equation solvers with large tuning ranges using Fabry-Pérot semiconductor optical amplifiers.
    Chen K; Hou J; Huang Z; Cao T; Zhang J; Yu Y; Zhang X
    Opt Express; 2015 Feb; 23(3):3784-94. PubMed ID: 25836230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Near infrared amplified spontaneous emission in a dye-doped polymeric waveguide for active plasmonic applications.
    Keshmarzi EK; Tait RN; Berini P
    Opt Express; 2014 May; 22(10):12452-60. PubMed ID: 24921362
    [TBL] [Abstract][Full Text] [Related]  

  • 34. All-optical power equalization based on a two-section reflective semiconductor optical amplifier.
    Huang L; Hong W; Jiang G
    Opt Express; 2013 Feb; 21(4):4598-611. PubMed ID: 23481993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental study on seed light source coherence dependence of continuous-wave supercontinuum performance.
    Lee JH; Han YG; Lee S
    Opt Express; 2006 Apr; 14(8):3443-52. PubMed ID: 19516489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel monolithic integration scheme for high-speed electroabsorption modulators and semiconductor optical amplifiers using cascaded structure.
    Lin FZ; Wu TH; Chiu YJ
    Opt Express; 2009 Jun; 17(12):10378-84. PubMed ID: 19506692
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gigahertz to terahertz tunable all-optical single-side-band microwave generation via semiconductor optical amplifier gain engineering.
    Li F; Helmy AS
    Opt Lett; 2013 Nov; 38(22):4542-5. PubMed ID: 24322069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast gain recovery rates with strong wavelength dependence in a non-linear SOA.
    Cleary CS; Power MJ; Schneider S; Webb RP; Manning RJ
    Opt Express; 2010 Dec; 18(25):25726-37. PubMed ID: 21164918
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 100-Gb/s 2R regeneration using cross gain compression in semiconductor optical amplifiers.
    Chen X; Huo L; Jiang X; Lou C
    Opt Express; 2015 Sep; 23(18):23143-54. PubMed ID: 26368417
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theoretical study of gain spectrum and static gain saturation characteristics of integrated twin-guide semiconductor optical amplifier.
    Miao Q; Huang D
    Opt Express; 2006 Jul; 14(15):6864-9. PubMed ID: 19516869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.