These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 19532420)

  • 1. Direct laser writing of three-dimensional photonic crystal lattices within a PbS quantum-dot-doped polymer material.
    Ventura MJ; Bullen C; Gu M
    Opt Express; 2007 Feb; 15(4):1817-22. PubMed ID: 19532420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material.
    Li J; Jia B; Zhou G; Gu M
    Opt Express; 2006 Oct; 14(22):10740-5. PubMed ID: 19529482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of ultrafast-laser-driven microexplosional for fabricating three-dimensional void-based diamond-lattice photonic crystals in a solid polymer material.
    Zhou G; Ventura MJ; Vanner MR; Gu M
    Opt Lett; 2004 Oct; 29(19):2240-2. PubMed ID: 15524367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Planar cavity modes in void channel polymer photonic crystals.
    Ventura M; Straub M; Gu M
    Opt Express; 2005 Apr; 13(7):2767-73. PubMed ID: 19495170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications.
    Deubel M; von Freymann G; Wegener M; Pereira S; Busch K; Soukoulis CM
    Nat Mater; 2004 Jul; 3(7):444-7. PubMed ID: 15195083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum dot based 3D printed woodpile photonic crystals tuned for the visible.
    Sakellari I; Kabouraki E; Karanikolopoulos D; Droulias S; Farsari M; Loukakos P; Vamvakaki M; Gray D
    Nanoscale Adv; 2019 Sep; 1(9):3413-3423. PubMed ID: 36133530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple higher-order stop gaps in infrared polymer photonic crystals.
    Straub M; Ventura M; Gu M
    Phys Rev Lett; 2003 Jul; 91(4):043901. PubMed ID: 12906658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional woodpile photonic crystal templates for the infrared spectral range.
    Mizeikis V; Seet KK; Juodkazis S; Misawa H
    Opt Lett; 2004 Sep; 29(17):2061-3. PubMed ID: 15455780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging single quantum dots in three-dimensional photonic crystals.
    Barth M; Schuster R; Gruber A; Cichos F
    Phys Rev Lett; 2006 Jun; 96(24):243902. PubMed ID: 16907242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reversibly tunable photonic crystal nanocavity laser using photochromic thin film.
    Sridharan D; Bose R; Kim H; Solomon GS; Waks E
    Opt Express; 2011 Mar; 19(6):5551-8. PubMed ID: 21445193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of light emission by 3D photonic crystals.
    Ogawa S; Imada M; Yoshimoto S; Okano M; Noda S
    Science; 2004 Jul; 305(5681):227-9. PubMed ID: 15178750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization.
    Serbin J; Gu M
    Opt Express; 2006 Apr; 14(8):3563-8. PubMed ID: 19516503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional photonic band-Gap defect mode laser.
    Painter O; Lee RK; Scherer A; Yariv A; O'Brien JD; Dapkus PD; Kim I
    Science; 1999 Jun; 284(5421):1819-21. PubMed ID: 10364550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method.
    Jia B; Kang H; Li J; Gu M
    Opt Lett; 2009 Jul; 34(13):1918-20. PubMed ID: 19571951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional invisibility cloak at optical wavelengths.
    Ergin T; Stenger N; Brenner P; Pendry JB; Wegener M
    Science; 2010 Apr; 328(5976):337-9. PubMed ID: 20299551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic band-edge micro lasers with quantum dot gain.
    Nomura M; Iwamoto S; Tandaechanurat A; Ota Y; Kumagai N; Arakawa Y
    Opt Express; 2009 Jan; 17(2):640-8. PubMed ID: 19158877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic bandgap properties of void-based body-centered-cubic photonic crystals in polymer.
    Zhou G; Ventura M; Gu M; Matthews A; Kivshar Y
    Opt Express; 2005 Jun; 13(12):4390-5. PubMed ID: 19495354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optically triggered Q-switched photonic crystal laser.
    Maune B; Witzens J; Baehr-Jones T; Kolodrubetz M; Atwater H; Scherer A; Hagen R; Qiu Y
    Opt Express; 2005 Jun; 13(12):4699-707. PubMed ID: 19495386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optically Clear and Resilient Free-Form µ-Optics 3D-Printed via Ultrafast Laser Lithography.
    Jonušauskas L; Gailevičius D; Mikoliūnaitė L; Sakalauskas D; Šakirzanovas S; Juodkazis S; Malinauskas M
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region.
    Mizeikis V; Juodkazis S; Tarozaite R; Juodkazyte J; Juodkazis K; Misawa H
    Opt Express; 2007 Jun; 15(13):8454-64. PubMed ID: 19547177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.