BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19532501)

  • 1. The design and simulated performance of a coated nano-particle laser.
    Gordon JA; Ziolkowski RW
    Opt Express; 2007 Mar; 15(5):2622-53. PubMed ID: 19532501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating functionalized active coated nanoparticles for use in nano-sensing applications.
    Gordon JA; Ziolkowski RW
    Opt Express; 2007 Oct; 15(20):12562-82. PubMed ID: 19550525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring optical pulling force on gain coated nanoparticles with nonlocal effective medium theory.
    Bian X; Gao DL; Gao L
    Opt Express; 2017 Oct; 25(20):24566-24578. PubMed ID: 29041401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband and Low-Loss Plasmonic Light Trapping in Dye-Sensitized Solar Cells Using Micrometer-Scale Rodlike and Spherical Core-Shell Plasmonic Particles.
    Malekshahi Byranvand M; Nemati Kharat A; Taghavinia N; Dabirian A
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16359-67. PubMed ID: 27300764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of the excitation source and plasmonic material on cylindrical active coated nano-particles.
    Arslanagic S; Liu Y; Malureanu R; Ziolkowski RW
    Sensors (Basel); 2011; 11(9):9109-20. PubMed ID: 22164123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core-Shell Nano-Antenna Configurations for Array Formation with More Stability Having Conventional and Non-Conventional Directivity and Propagation Behavior.
    Hayat Q; Geng J; Liang X; Jin R; Ur Rehman S; He C; Wu H; Nawaz H
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33406685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subwavelength core/shell cylindrical nanostructures for novel plasmonic and metamaterial devices.
    Kim KH; No YS
    Nano Converg; 2017; 4(1):32. PubMed ID: 29276664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An optical reflectarray nanoantenna: the concept and design.
    Ahmadi A; Ghadarghadr S; Mosallaei H
    Opt Express; 2010 Jan; 18(1):123-33. PubMed ID: 20173831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic enhancement of second harmonic generation on metal coated nanoparticles.
    Wunderlich S; Peschel U
    Opt Express; 2013 Aug; 21(16):18611-23. PubMed ID: 23938778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient and high-quality absorption enhancement using epsilon-near-zero cylindrical nano-shells constructed by graphene.
    Raad SH; Afshari-Bavil M; Liu D
    Sci Rep; 2024 Mar; 14(1):6742. PubMed ID: 38509124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CNP optical metamaterials.
    Gordon JA; Ziolkowski RW
    Opt Express; 2008 Apr; 16(9):6692-716. PubMed ID: 18545373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembled Monolayer of Wavelength-Scale Core-Shell Particles for Low-Loss Plasmonic and Broadband Light Trapping in Solar Cells.
    Dabirian A; Byranvand MM; Naqavi A; Kharat AN; Taghavinia N
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):247-55. PubMed ID: 26726990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring the plasmonic whispering gallery modes of a metal-coated resonator for potential application as a refractometric sensor.
    Guo CL; Che KJ; Gu GQ; Cai GX; Cai ZP; Xu HY
    Appl Opt; 2015 Feb; 54(6):1250-6. PubMed ID: 25968184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses.
    De Luca A; Grzelczak MP; Pastoriza-Santos I; Liz-Marzán LM; La Deda M; Striccoli M; Strangi G
    ACS Nano; 2011 Jul; 5(7):5823-9. PubMed ID: 21682326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable wavelength dependent nanoswitches enabled by simple plasmonic core-shell particles.
    Panaretos AH; Werner DH
    Opt Express; 2013 Nov; 21(22):26052-67. PubMed ID: 24216830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative effective permeability and left-handed materials at optical frequencies.
    Alù A; Salandrino A; Engheta N
    Opt Express; 2006 Feb; 14(4):1557-67. PubMed ID: 19503482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fano resonance-induced negative optical scattering force on plasmonic nanoparticles.
    Chen H; Liu S; Zi J; Lin Z
    ACS Nano; 2015 Feb; 9(2):1926-35. PubMed ID: 25635617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabricating metamaterials using the fiber drawing method.
    Tuniz A; Lwin R; Argyros A; Fleming SC; Kuhlmey BT
    J Vis Exp; 2012 Oct; (68):. PubMed ID: 23117870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifrequency optical invisibility cloak with layered plasmonic shells.
    Alù A; Engheta N
    Phys Rev Lett; 2008 Mar; 100(11):113901. PubMed ID: 18517786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.