These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 19532502)

  • 1. Optimization of pump spectra for gain-flattened photonic crystal fiber Raman amplifiers operating in C-band.
    Sasaki K; Varshney SK; Wada K; Saitoh K; Koshiba M
    Opt Express; 2007 Mar; 15(5):2654-68. PubMed ID: 19532502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band.
    Varshney SK; Fujisawa T; Saitoh K; Koshiba M
    Opt Express; 2006 Apr; 14(8):3528-40. PubMed ID: 19516499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band.
    Varshney S; Fujisawa T; Saitoh K; Koshiba M
    Opt Express; 2005 Nov; 13(23):9516-26. PubMed ID: 19503154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband, lossless, dispersion-compensating asymmetrical twin-core fiber design with flat-gain Raman amplification.
    Kakkar C; Thyagarajan K
    Appl Opt; 2005 Apr; 44(12):2396-401. PubMed ID: 15861848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pump scheme for gain-flattened Raman fiber amplifiers using improved particle swarm optimization and modified shooting algorithm.
    Jiang HM; Xie K; Wang YF
    Opt Express; 2010 May; 18(11):11033-45. PubMed ID: 20588959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical comparison between conventional dispersion compensating fibers and photonic crystal fibers as lumped Raman amplifiers.
    Castellani CE; Cani SP; Segatto ME; Pontes MJ; Romero MA
    Opt Express; 2009 Dec; 17(25):23169-80. PubMed ID: 20052245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gain and bandwidth investigation in a near-zero ultra-flat dispersion PCF for optical parametric amplification around the communication wavelength.
    Maji PS; Chaudhuri PR
    Appl Opt; 2015 Apr; 54(11):3263-72. PubMed ID: 25967312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation.
    Fujisawa T; Saitoh K; Wada K; Koshiba M
    Opt Express; 2006 Jan; 14(2):893-900. PubMed ID: 19503409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of highly nonlinear photonic crystal fibers with flattened chromatic dispersion.
    Li X; Xu Z; Ling W; Liu P
    Appl Opt; 2014 Oct; 53(29):6682-7. PubMed ID: 25322369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of the pump power spectrum for the distributed fiber Raman amplifiers using incoherent pumping.
    Wen S
    Opt Express; 2006 May; 14(9):3752-62. PubMed ID: 19516522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supercontinuum generation at 1.55  μm in As
    Balani H; Singh G; Tiwari M; Janyani V; Ghunawat AK
    Appl Opt; 2018 May; 57(13):3524-3533. PubMed ID: 29726530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersion, birefringence, and amplification characteristics of newly designed dispersion compensating hole-assisted fibers.
    Saitoh K; Varshney SK; Koshiba M
    Opt Express; 2007 Dec; 15(26):17724-35. PubMed ID: 19551069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion.
    Saitoh K; Koshiba M; Hasegawa T; Sasaoka E
    Opt Express; 2003 Apr; 11(8):843-52. PubMed ID: 19461798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses.
    Saitoh K; Florous N; Koshiba M
    Opt Express; 2005 Oct; 13(21):8365-71. PubMed ID: 19498866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a flat-gain multipumped distributed fiber Raman amplifier by particle swarm optimization.
    Mowla A; Granpayeh N
    J Opt Soc Am A Opt Image Sci Vis; 2008 Dec; 25(12):3059-66. PubMed ID: 19037397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-effective-area dispersion-compensating fiber design based on dual-core microstructure.
    Prabhakar G; Peer A; Rastogi V; Kumar A
    Appl Opt; 2013 Jul; 52(19):4505-9. PubMed ID: 23842244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly birefringent, highly negative dispersion compensating photonic crystal fiber.
    Bala A; Chowdhury KR; Mia MB; Faisal M
    Appl Opt; 2017 Sep; 56(25):7256-7261. PubMed ID: 29047988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gain-flattened fiber Raman amplifiers with nonlinearity-broadened pumps.
    Chestnut DA; Taylor JR
    Opt Lett; 2003 Dec; 28(23):2294-6. PubMed ID: 14680160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman amplification characteristics of As2Se3 photonic crystal fibers.
    Varshney SK; Saitoh K; Iizawa K; Tsuchida Y; Koshiba M; Sinha RK
    Opt Lett; 2008 Nov; 33(21):2431-3. PubMed ID: 18978877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of artificial defects for engineering large effective mode area, flat chromatic dispersion, and low leakage losses in photonic crystal fibers: Towards high speed reconfigurable transmission platforms.
    Florous N; Saitoh K; Koshiba M
    Opt Express; 2006 Jan; 14(2):901-13. PubMed ID: 19503410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.