These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19532784)

  • 1. Observation of a comb of optical squeezing over many gigahertz of bandwidth.
    Senior RJ; Milford GN; Janousek J; Dunlop AE; Wagner K; Bachor HA; Ralph TC; Huntington EH; Harb CC
    Opt Express; 2007 Apr; 15(9):5310-7. PubMed ID: 19532784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of a comb of squeezed states with a strong squeezing factor by a bichromatic local oscillator.
    Shi S; Wang Y; Tian L; Wang J; Sun X; Zheng Y
    Opt Lett; 2020 Apr; 45(8):2419-2422. PubMed ID: 32287248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous-wave nonclassical light with gigahertz squeezing bandwidth.
    Ast S; Samblowski A; Mehmet M; Steinlechner S; Eberle T; Schnabel R
    Opt Lett; 2012 Jun; 37(12):2367-9. PubMed ID: 22739910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tools for multimode quantum information: modulation, detection, and spatial quantum correlations.
    Lassen M; Delaubert V; Janousek J; Wagner K; Bachor HA; Lam PK; Treps N; Buchhave P; Fabre C; Harb CC
    Phys Rev Lett; 2007 Feb; 98(8):083602. PubMed ID: 17359098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity.
    Ast S; Mehmet M; Schnabel R
    Opt Express; 2013 Jun; 21(11):13572-9. PubMed ID: 23736610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor.
    Liu C; Jing J; Zhou Z; Pooser RC; Hudelist F; Zhou L; Zhang W
    Opt Lett; 2011 Aug; 36(15):2979-81. PubMed ID: 21808378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavity enhanced parametric homodyne detection of a squeezed quantum comb.
    Tian Y; Sun X; Wang Y; Li Q; Tian L; Zheng Y
    Opt Lett; 2022 Feb; 47(3):533-536. PubMed ID: 35103674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical under-sampling by using a broadband optical comb with a high average power.
    Sherman A; Horowitz M; Zach S
    Opt Express; 2014 Jun; 22(13):15502-13. PubMed ID: 24977809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of polarization squeezing with periodically poled KTP at 1064 nm.
    Lassen M; Sabuncu M; Buchhave P; Andersen UL
    Opt Express; 2007 Apr; 15(8):5077-82. PubMed ID: 19532757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parametric noise squeezing and parametric resonance of microcantilevers in air and liquid environments.
    Prakash G; Raman A; Rhoads J; Reifenberger RG
    Rev Sci Instrum; 2012 Jun; 83(6):065109. PubMed ID: 22755664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compact representation of the spatial modes of a phase-sensitive image amplifier.
    Annamalai M; Stelmakh N; Kumar P; Vasilyev M
    Opt Express; 2013 Nov; 21(23):28134-53. PubMed ID: 24514326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supercontinuum-based 10-GHz flat-topped optical frequency comb generation.
    Wu R; Torres-Company V; Leaird DE; Weiner AM
    Opt Express; 2013 Mar; 21(5):6045-52. PubMed ID: 23482172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lifting the bandwidth limit of optical homodyne measurement with broadband parametric amplification.
    Shaked Y; Michael Y; Vered RZ; Bello L; Rosenbluh M; Pe'er A
    Nat Commun; 2018 Feb; 9(1):609. PubMed ID: 29426909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Higher order mode entanglement in a type II optical parametric oscillator.
    Guo J; Cai C; Ma L; Liu K; Sun H; Gao J
    Opt Express; 2017 Mar; 25(5):4985-4993. PubMed ID: 28380765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1.8-THz-wide optical frequency comb emitted from monolithic passively mode-locked semiconductor quantum-well laser.
    Lo MC; Guzmán R; Ali M; Santos R; Augustin L; Carpintero G
    Opt Lett; 2017 Oct; 42(19):3872-3875. PubMed ID: 28957148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-frequency cavity optomechanics using bulk acoustic phonons.
    Kharel P; Harris GI; Kittlaus EA; Renninger WH; Otterstrom NT; Harris JGE; Rakich PT
    Sci Adv; 2019 Apr; 5(4):eaav0582. PubMed ID: 30972362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flat-top bandpass microwave photonic filter with tunable bandwidth and center frequency based on a Fabry-Pérot semiconductor optical amplifier.
    Jiang F; Yu Y; Cao T; Tang H; Dong J; Zhang X
    Opt Lett; 2016 Jul; 41(14):3301-4. PubMed ID: 27420520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limits to wideband pulsed squeezing in a traveling-wave parametric amplifier with group-velocity dispersion.
    Raymer MG; Drummond PD; Carter SJ
    Opt Lett; 1991 Aug; 16(15):1189-91. PubMed ID: 19776916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic integrated circuit implementation of a sub-GHz-selectivity frequency comb filter for optical clock multiplication.
    Geng Z; Xie Y; Zhuang L; Burla M; Hoekman M; Roeloffzen CGH; Lowery AJ
    Opt Express; 2017 Oct; 25(22):27635-27645. PubMed ID: 29092234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 10-GHz self-referenced optical frequency comb.
    Bartels A; Heinecke D; Diddams SA
    Science; 2009 Oct; 326(5953):681. PubMed ID: 19900924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.