These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19532839)

  • 1. Faraday rotation in femtosecond laser micromachined waveguides.
    Shih T; Gattass RR; Mendonca CR; Mazur E
    Opt Express; 2007 Apr; 15(9):5809-14. PubMed ID: 19532839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competition of Faraday rotation and birefringence in femtosecond laser direct written waveguides in magneto-optical glass.
    Liu Q; Gross S; Dekker P; Withford MJ; Steel MJ
    Opt Express; 2014 Nov; 22(23):28037-51. PubMed ID: 25402044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compact all-fiber optical Faraday components using 65-wt%-terbium-doped fiber with a record Verdet constant of -32 rad/(Tm).
    Sun L; Jiang S; Marciante JR
    Opt Express; 2010 Jun; 18(12):12191-6. PubMed ID: 20588343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber.
    Sun L; Jiang S; Marciante JR
    Opt Express; 2010 Mar; 18(6):5407-12. PubMed ID: 20389556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responsivity optimization in magneto-optic sensors based on ferromagnetic materials.
    Garzarella A; Shinn MA; Wu DH
    Appl Opt; 2015 Sep; 54(26):7904-11. PubMed ID: 26368962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of nanosecond pulsed magnetic fields using temporally resolved Faraday rotation through a magneto-optical waveguide.
    Syed W; Hammer DA; Lipson M
    Opt Lett; 2009 Apr; 34(7):1009-11. PubMed ID: 19340202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic field measurements in low density plasmas using paramagnetic Faraday rotator glass.
    Clark SE; Schaeffer DB; Bondarenko AS; Everson ET; Constantin CG; Niemann C
    Rev Sci Instrum; 2012 Oct; 83(10):10D503. PubMed ID: 23126847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Miniaturized double transit magnetic field measurement probe using the Faraday rotation principle.
    Kanchi S; Shukla R; Dey P; Dubey AK; Sagar K; Sharma A
    Appl Opt; 2023 Feb; 62(4):1123-1129. PubMed ID: 36821173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of magneto-optical waveguides inside transparent silica xerogels containing ferrimagnetic Fe
    Nakashima S; Okabe R; Sugioka K; Ishida A
    Opt Express; 2018 Nov; 26(24):31898-31907. PubMed ID: 30650769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Faraday effect in multimode tellurite glass optical fiber for magneto-optical sensing and monitoring applications.
    Shiyu Y; Lousteau J; Olivero M; Merlo M; Boetti N; Abrate S; Chen Q; Chen Q; Milanese D
    Appl Opt; 2012 Jul; 51(19):4542-6. PubMed ID: 22772128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magneto-optic pyrochlore ceramics of Tb
    Yasuhara R; Ikesue A
    Opt Express; 2019 Mar; 27(5):7485-7490. PubMed ID: 30876311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large Faraday Rotation in Optical-Quality Phthalocyanine and Porphyrin Thin Films.
    Nelson Z; Delage-Laurin L; Peeks MD; Swager TM
    J Am Chem Soc; 2021 May; 143(18):7096-7103. PubMed ID: 33905654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective optical Faraday rotations of semiconductor EuS nanocrystals with paramagnetic transition-metal ions.
    Hasegawa Y; Maeda M; Nakanishi T; Doi Y; Hinatsu Y; Fujita K; Tanaka K; Koizumi H; Fushimi K
    J Am Chem Soc; 2013 Feb; 135(7):2659-66. PubMed ID: 23343325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscopic Faraday rotation measurement system using pulsed magnetic fields.
    Egami S; Watarai H
    Rev Sci Instrum; 2009 Sep; 80(9):093705. PubMed ID: 19791942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Verdet Constant Glass for Magnetic Field Sensors.
    Zhao X; Li W; Xia Q; Lu P; Tao H; Xia M; Zhang X; Zhao X; Xu Y
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):57028-57036. PubMed ID: 36519737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation.
    Chin JY; Steinle T; Wehlus T; Dregely D; Weiss T; Belotelov VI; Stritzker B; Giessen H
    Nat Commun; 2013; 4():1599. PubMed ID: 23511464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator.
    Yoshida H; Tsubakimoto K; Fujimoto Y; Mikami K; Fujita H; Miyanaga N; Nozawa H; Yagi H; Yanagitani T; Nagata Y; Kinoshita H
    Opt Express; 2011 Aug; 19(16):15181-7. PubMed ID: 21934880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensation of Verdet Constant Temperature Dependence by Crystal Core Temperature Measurement.
    Petricevic SJ; Mihailovic PM
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27706043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonically enhanced Faraday effect in metal and ferrite nanoparticles composite precipitated inside glass.
    Nakashima S; Sugioka K; Tanaka K; Shimizu M; Shimotsuma Y; Miura K; Midorikawa K; Mukai K
    Opt Express; 2012 Dec; 20(27):28191-9. PubMed ID: 23263053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber.
    Sun L; Jiang S; Zuegel JD; Marciante JR
    Opt Lett; 2010 Mar; 35(5):706-8. PubMed ID: 20195326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.