BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19532860)

  • 1. Cumulated advantages of enzymatic and carbene chemistry for the non-organometallic synthesis of (co)polyesters.
    Xiao Y; Coulembier O; Koning CE; Heise A; Dubois P
    Chem Commun (Camb); 2009 May; (18):2472-4. PubMed ID: 19532860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epoxy functionalised poly(epsilon-caprolactone): synthesis and application.
    Zhou J; Wang W; Villarroya S; Thurecht KJ; Howdle SM
    Chem Commun (Camb); 2008 Nov; (44):5806-8. PubMed ID: 19009088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of biodegradable polymers using biocatalysis with Yarrowia lipolytica lipase.
    Barrera-Rivera KA; Flores-Carreón A; Martínez-Richa A
    Methods Mol Biol; 2012; 861():485-93. PubMed ID: 22426736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of lipase-catalysed silicone-polyesters and silicone-polyamides at elevated temperatures.
    Frampton MB; Zelisko PM
    Chem Commun (Camb); 2013 Oct; 49(81):9269-71. PubMed ID: 23999945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green and selective polycondensation methods toward linear sorbitol-based polyesters: enzymatic versus organic and metal-based catalysis.
    Gustini L; Lavilla C; Janssen WW; Martínez de Ilarduya A; Muñoz-Guerra S; Koning CE
    ChemSusChem; 2016 Aug; 9(16):2250-60. PubMed ID: 27406029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zwitterionic polymerization of lactide to cyclic poly(lactide) by using N-heterocyclic carbene organocatalysts.
    Culkin DA; Jeong W; Csihony S; Gomez ED; Balsara NP; Hedrick JL; Waymouth RM
    Angew Chem Int Ed Engl; 2007; 46(15):2627-30. PubMed ID: 17330912
    [No Abstract]   [Full Text] [Related]  

  • 7. Lipase-ultrasound assisted synthesis of polyesters.
    Tomke PD; Zhao X; Chiplunkar PP; Xu B; Wang H; Silva C; Rathod VK; Cavaco-Paulo A
    Ultrason Sonochem; 2017 Sep; 38():496-502. PubMed ID: 28633852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring mild enzymatic sustainable routes for the synthesis of bio-degradable aromatic-aliphatic oligoesters.
    Pellis A; Guarneri A; Brandauer M; Acero EH; Peerlings H; Gardossi L; Guebitz GM
    Biotechnol J; 2016 May; 11(5):642-7. PubMed ID: 26762794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereoelective polymerization of D,L-lactide using N-heterocyclic carbene based compounds.
    Jensen TR; Breyfogle LE; Hillmyer MA; Tolman WB
    Chem Commun (Camb); 2004 Nov; (21):2504-5. PubMed ID: 15514837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient N-heterocyclic carbene-ruthenium complex: application towards the synthesis of polyesters and polyamides.
    Malineni J; Keul H; Möller M
    Macromol Rapid Commun; 2015 Mar; 36(6):547-52. PubMed ID: 25653190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipase-catalyzed synthesis of azido-functionalized aliphatic polyesters towards acid-degradable amphiphilic graft copolymers.
    Wu WX; Wang N; Liu BY; Deng QF; Yu XQ
    Soft Matter; 2014 Feb; 10(8):1199-213. PubMed ID: 24652240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic synthesis of biobased polyesters using 2,5-bis(hydroxymethyl)furan as the building block.
    Jiang Y; Woortman AJ; Alberda van Ekenstein GO; Petrović DM; Loos K
    Biomacromolecules; 2014 Jul; 15(7):2482-93. PubMed ID: 24835301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipase-catalyzed polyester synthesis--a green polymer chemistry.
    Kobayashi S
    Proc Jpn Acad Ser B Phys Biol Sci; 2010; 86(4):338-65. PubMed ID: 20431260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic preparation of novel thermoplastic di-block copolyesters containing poly[(R)-3-hydroxybutyrate] and poly(epsilon-caprolactone) blocks via ring-opening polymerization.
    Dai S; Li Z
    Biomacromolecules; 2008 Jul; 9(7):1883-93. PubMed ID: 18540675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic synthesis of polyesters from lactones, dicarboxylic acid divinyl esters, and glycols through combination of ring-opening polymerization and polycondensation.
    Namekawa S; Uyama H; Kobayashi S
    Biomacromolecules; 2000; 1(3):335-8. PubMed ID: 11710121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new type of self-supported, polymeric Ru-carbene complex for homogeneous catalysis and heterogeneous recovery: synthesis and catalytic activities for ring-closing metathesis.
    Chen SW; Kim JH; Shin H; Lee SG
    Org Biomol Chem; 2008 Aug; 6(15):2676-8. PubMed ID: 18633523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme promiscuity: using a P450 enzyme as a carbene transfer catalyst.
    Roiban GD; Reetz MT
    Angew Chem Int Ed Engl; 2013 May; 52(21):5439-40. PubMed ID: 23592495
    [No Abstract]   [Full Text] [Related]  

  • 18. Lipase-catalyzed ring-opening polymerization of molecularly pure cyclic oligomers for use in synthesis and chemical recycling of aliphatic polyesters.
    Kondo A; Sugihara S; Kuwahara M; Toshima K; Matsumura S
    Macromol Biosci; 2008 Jun; 8(6):533-9. PubMed ID: 18322909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling enzymatic kinetic pathways for ring-opening lactone polymerization.
    Johnson PM; Kundu S; Beers KL
    Biomacromolecules; 2011 Sep; 12(9):3337-43. PubMed ID: 21834510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-step biocatalytic route to biobased functional polyesters from omega-carboxy fatty acids and diols.
    Yang Y; Lu W; Zhang X; Xie W; Cai M; Gross RA
    Biomacromolecules; 2010 Jan; 11(1):259-68. PubMed ID: 20000460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.