These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
825 related articles for article (PubMed ID: 19532959)
1. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Baret JC; Miller OJ; Taly V; Ryckelynck M; El-Harrak A; Frenz L; Rick C; Samuels ML; Hutchison JB; Agresti JJ; Link DR; Weitz DA; Griffiths AD Lab Chip; 2009 Jul; 9(13):1850-8. PubMed ID: 19532959 [TBL] [Abstract][Full Text] [Related]
2. CotA laccase: high-throughput manipulation and analysis of recombinant enzyme libraries expressed in E. coli using droplet-based microfluidics. Beneyton T; Coldren F; Baret JC; Griffiths AD; Taly V Analyst; 2014 Jul; 139(13):3314-23. PubMed ID: 24733162 [TBL] [Abstract][Full Text] [Related]
3. High-throughput screening of enzyme libraries: in vitro evolution of a beta-galactosidase by fluorescence-activated sorting of double emulsions. Mastrobattista E; Taly V; Chanudet E; Treacy P; Kelly BT; Griffiths AD Chem Biol; 2005 Dec; 12(12):1291-300. PubMed ID: 16356846 [TBL] [Abstract][Full Text] [Related]
4. A completely in vitro ultrahigh-throughput droplet-based microfluidic screening system for protein engineering and directed evolution. Fallah-Araghi A; Baret JC; Ryckelynck M; Griffiths AD Lab Chip; 2012 Mar; 12(5):882-91. PubMed ID: 22277990 [TBL] [Abstract][Full Text] [Related]
5. Hydrodynamic gating valve for microfluidic fluorescence-activated cell sorting. Chen P; Feng X; Hu R; Sun J; Du W; Liu BF Anal Chim Acta; 2010 Mar; 663(1):1-6. PubMed ID: 20172088 [TBL] [Abstract][Full Text] [Related]
6. High-throughput screening of enzyme libraries: thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments. Aharoni A; Amitai G; Bernath K; Magdassi S; Tawfik DS Chem Biol; 2005 Dec; 12(12):1281-9. PubMed ID: 16356845 [TBL] [Abstract][Full Text] [Related]
15. Safe sorting of GFP-transduced live cells for subsequent culture using a modified FACS vantage. Sørensen TU; Gram GJ; Nielsen SD; Hansen JE Cytometry; 1999 Dec; 37(4):284-90. PubMed ID: 10547613 [TBL] [Abstract][Full Text] [Related]
16. Short-term physiologic effects of mechanical flow sorting and the Becton-Dickinson cell concentrator in cultures of the marine phytoflagellata Emiliania huxleyi and Micromonas pusilla. Jochem FJ Cytometry A; 2005 May; 65(1):77-83. PubMed ID: 15791646 [TBL] [Abstract][Full Text] [Related]
17. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Tan YC; Fisher JS; Lee AI; Cristini V; Lee AP Lab Chip; 2004 Aug; 4(4):292-8. PubMed ID: 15269794 [TBL] [Abstract][Full Text] [Related]
18. High-throughput screening of microchip-synthesized genes in programmable double-emulsion droplets. Chan HF; Ma S; Tian J; Leong KW Nanoscale; 2017 Mar; 9(10):3485-3495. PubMed ID: 28239692 [TBL] [Abstract][Full Text] [Related]
19. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches. Lai CW; Lin YH; Lee GB Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177 [TBL] [Abstract][Full Text] [Related]
20. Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting. Wu L; Chen P; Dong Y; Feng X; Liu BF Biomed Microdevices; 2013 Jun; 15(3):553-60. PubMed ID: 23404263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]