These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 19532964)

  • 21. A multifunctional micro-fluidic system for dielectrophoretic concentration coupled with immuno-capture of low numbers of Listeria monocytogenes.
    Yang L; Banada PP; Chatni MR; Seop Lim K; Bhunia AK; Ladisch M; Bashir R
    Lab Chip; 2006 Jul; 6(7):896-905. PubMed ID: 16804594
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Filmy channel microchip with amperometric detection.
    Wang W; Fu FF; Xu X; Lin JM; Chen G
    Electrophoresis; 2009 Nov; 30(22):3932-8. PubMed ID: 19885881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybrid dynamic coating with n-dodecyl beta-D-maltoside and methyl cellulose for high-performance carbohydrate analysis on poly(methyl methacrylate) chips.
    Dang F; Kakehi K; Cheng J; Tabata O; Kurokawa M; Nakajima K; Ishikawa M; Baba Y
    Anal Chem; 2006 Mar; 78(5):1452-8. PubMed ID: 16503593
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interconnected ordered nanoporous networks of colloidal crystals integrated on a microfluidic chip for highly efficient protein concentration.
    Hu YL; Wang C; Wu ZQ; Xu JJ; Chen HY; Xia XH
    Electrophoresis; 2011 Nov; 32(23):3424-30. PubMed ID: 22057434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and characterization of poly(dimethylsiloxane)-based valves for interfacing continuous-flow sampling to microchip electrophoresis.
    Li MW; Huynh BH; Hulvey MK; Lunte SM; Martin RS
    Anal Chem; 2006 Feb; 78(4):1042-51. PubMed ID: 16478094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decreasing effective nanofluidic filter size by modulating electrical double layers: separation enhancement in microfabricated nanofluidic filters.
    Bow H; Fu J; Han J
    Electrophoresis; 2008 Dec; 29(23):4646-51. PubMed ID: 19016242
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glucose microfluidic biosensors based on immobilizing glucose oxidase in poly(dimethylsiloxane) electrophoretic microchips.
    Zhang Q; Xu JJ; Chen HY
    J Chromatogr A; 2006 Nov; 1135(1):122-6. PubMed ID: 17046001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integration of continuous-flow sampling with microchip electrophoresis using poly(dimethylsiloxane)-based valves in a reversibly sealed device.
    Li MW; Martin RS
    Electrophoresis; 2007 Jul; 28(14):2478-88. PubMed ID: 17577199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of amino acids and proteins using a poly(methyl methacrylate) microfluidic system.
    Kato M; Gyoten Y; Sakai-Kato K; Nakajima T; Toyo'oka T
    Electrophoresis; 2005 Oct; 26(19):3682-8. PubMed ID: 16152664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Size exclusion chromatography of microliter volumes for on-line use in low-pressure microfluidic systems.
    Chirica G; Lachmann J; Chan J
    Anal Chem; 2006 Aug; 78(15):5362-8. PubMed ID: 16878870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isotachophoretic free-flow electrophoretic focusing and SERS detection of myoglobin inside a miniaturized device.
    Becker M; Budich C; Deckert V; Janasek D
    Analyst; 2009 Jan; 134(1):38-40. PubMed ID: 19082172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic picoliter-scale translational spontaneous sample introduction for high-speed capillary electrophoresis.
    Zhang T; Fang Q; Du WB; Fu JL
    Anal Chem; 2009 May; 81(9):3693-8. PubMed ID: 19351143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous microfluidic DNA and protein trapping and concentration by balancing transverse electrokinetic forces.
    Morales MC; Lin H; Zahn JD
    Lab Chip; 2012 Jan; 12(1):99-108. PubMed ID: 22045330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preconcentration of proteins on microfluidic devices using porous silica membranes.
    Foote RS; Khandurina J; Jacobson SC; Ramsey JM
    Anal Chem; 2005 Jan; 77(1):57-63. PubMed ID: 15623278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrated multilayer microfluidic device with a nanoporous membrane interconnect for online coupling of solid-phase extraction to microchip electrophoresis.
    Long Z; Shen Z; Wu D; Qin J; Lin B
    Lab Chip; 2007 Dec; 7(12):1819-24. PubMed ID: 18030406
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device.
    Miyaki K; Guo Y; Shimosaka T; Nakagama T; Nakajima H; Uchiyama K
    Anal Bioanal Chem; 2005 Jun; 382(3):810-6. PubMed ID: 15883790
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High intensity light emitting diode array as an alternative exposure source for the fabrication of electrophoretic microfluidic devices.
    Breadmore MC; Guijt RM
    J Chromatogr A; 2008 Dec; 1213(1):3-7. PubMed ID: 18930463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Micellar electrokinetic chromatography on microchips.
    Kitagawa F; Otsuka K
    J Sep Sci; 2008 Mar; 31(5):794-802. PubMed ID: 18293425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tuneable hydrophoretic separation using elastic deformation of poly(dimethylsiloxane).
    Choi S; Park JK
    Lab Chip; 2009 Jul; 9(13):1962-5. PubMed ID: 19532973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of channel position on sample confinement in two-dimensional planar microfluidic devices.
    Lerch MA; Hoffman MD; Jacobson SC
    Lab Chip; 2008 Feb; 8(2):316-22. PubMed ID: 18231672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.