BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2198 related articles for article (PubMed ID: 19532967)

  • 1. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable hydrodynamic chromatography of microparticles localized in short microchannels.
    Jellema LJ; Markesteijn AP; Westerweel J; Verpoorte E
    Anal Chem; 2010 May; 82(10):4027-35. PubMed ID: 20423105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple mechanism for reliable particle sorting in a microdevice with combined electroosmotic and pressure-driven flow.
    Johann R; Renaud P
    Electrophoresis; 2004 Nov; 25(21-22):3720-9. PubMed ID: 15565695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulating particles in microfluidics by floating electrodes.
    Yalcin SE; Sharma A; Qian S; Joo SW; Baysal O
    Electrophoresis; 2010 Nov; 31(22):3711-8. PubMed ID: 20945412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of mixtures of particles in a multipart microdevice employing insulator-based dielectrophoresis.
    Gallo-Villanueva RC; Pérez-González VH; Davalos RV; Lapizco-Encinas BH
    Electrophoresis; 2011 Sep; 32(18):2456-65. PubMed ID: 21874656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices.
    Chun MS; Shim MS; Choi NW
    Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and analysis of spatially uniform field electrokinetic flow devices: theory and experiment.
    Skulan AJ; Barrett LM; Singh AK; Cummings EB; Fiechtner GJ
    Anal Chem; 2005 Nov; 77(21):6790-7. PubMed ID: 16255575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
    Shi J; Huang H; Stratton Z; Huang Y; Huang TJ
    Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel microfluidic concept for bioanalysis using freely moving beads trapped in recirculating flows.
    Lettieri GL; Dodge A; Boer G; de Rooij NF; Verpoorte E
    Lab Chip; 2003 Feb; 3(1):34-9. PubMed ID: 15100803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of particle capture in a sawtooth patterned insulating electrokinetic microfluidic device.
    Staton SJ; Chen KP; Taylor TJ; Pacheco JR; Hayes MA
    Electrophoresis; 2010 Nov; 31(22):3634-41. PubMed ID: 21077235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of zeta potential of electroosmotic flow in a microchannel using a reduced-order model.
    Park HM; Hong SM; Lee JS
    Biomed Microdevices; 2007 Oct; 9(5):751-60. PubMed ID: 17530411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles.
    Tornay R; Braschler T; Demierre N; Steitz B; Finka A; Hofmann H; Hubbell JA; Renaud P
    Lab Chip; 2008 Feb; 8(2):267-73. PubMed ID: 18231665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.
    VanDelinder V; Groisman A
    Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical studies of electrokinetic control of DNA concentration in a closed-end microchannel.
    Daghighi Y; Li D
    Electrophoresis; 2010 Mar; 31(5):868-78. PubMed ID: 20191548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetic flow control in microfluidic chips using a field-effect transistor.
    Horiuchi K; Dutta P
    Lab Chip; 2006 Jun; 6(6):714-23. PubMed ID: 16738721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Focused electrophoretic motion and selected electrokinetic dispensing of particles and cells in cross-microchannels.
    Xuan X; Li D
    Electrophoresis; 2005 Sep; 26(18):3552-60. PubMed ID: 16110466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 110.