BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 19533080)

  • 1. A survey of flowering genes reveals the role of gibberellins in floral control in rose.
    Remay A; Lalanne D; Thouroude T; Le Couviour F; Hibrand-Saint Oyant L; Foucher F
    Theor Appl Genet; 2009 Sep; 119(5):767-81. PubMed ID: 19533080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a rose TFL1 homologue.
    Randoux M; Jeauffre J; Thouroude T; Vasseur F; Hamama L; Juchaux M; Sakr S; Foucher F
    J Exp Bot; 2012 Nov; 63(18):6543-54. PubMed ID: 23175671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RoKSN, a floral repressor, forms protein complexes with RoFD and RoFT to regulate vegetative and reproductive development in rose.
    Randoux M; Davière JM; Jeauffre J; Thouroude T; Pierre S; Toualbia Y; Perrotte J; Reynoird JP; Jammes MJ; Hibrand-Saint Oyant L; Foucher F
    New Phytol; 2014 Apr; 202(1):161-173. PubMed ID: 24308826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New resources for studying the rose flowering process.
    Foucher F; Chevalier M; Corre C; Soufflet-Freslon V; Legeai F; Hibrand-Saint Oyant L
    Genome; 2008 Oct; 51(10):827-37. PubMed ID: 18923534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome of the floral transition in Rosa chinensis 'Old Blush'.
    Guo X; Yu C; Luo L; Wan H; Zhen N; Xu T; Tan J; Pan H; Zhang Q
    BMC Genomics; 2017 Feb; 18(1):199. PubMed ID: 28228130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gibberellin as a factor in floral regulatory networks.
    Mutasa-Göttgens E; Hedden P
    J Exp Bot; 2009; 60(7):1979-89. PubMed ID: 19264752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genotype of FLOWERING LOCUS T homologue contributes to flowering time differences in wild and cultivated roses.
    Otagaki S; Ogawa Y; Hibrand-Saint Oyant L; Foucher F; Kawamura K; Horibe T; Matsumoto S
    Plant Biol (Stuttg); 2015 Jul; 17(4):808-15. PubMed ID: 25545704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods.
    Porri A; Torti S; Romera-Branchat M; Coupland G
    Development; 2012 Jun; 139(12):2198-209. PubMed ID: 22573618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The expression level of Rosa Terminal Flower 1 (RTFL1) is related with recurrent flowering in roses.
    Wang LN; Liu YF; Zhang YM; Fang RX; Liu QL
    Mol Biol Rep; 2012 Apr; 39(4):3737-46. PubMed ID: 21739143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic mechanisms in the repression of flowering by gibberellins in apple (Malus x domestica Borkh.).
    Zhang S; Gottschalk C; van Nocker S
    BMC Genomics; 2019 Oct; 20(1):747. PubMed ID: 31619173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of RoDELLA impacts the height, branching, and flowering behaviour of Pelargonium × domesticum transgenic plants.
    Hamama L; Naouar A; Gala R; Voisine L; Pierre S; Jeauffre J; Cesbron D; Leplat F; Foucher F; Dorion N; Hibrand-Saint Oyant L
    Plant Cell Rep; 2012 Nov; 31(11):2015-29. PubMed ID: 22898902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental transcriptome analysis of floral transition in Rosa odorata var. gigantea.
    Guo X; Yu C; Luo L; Wan H; Zhen N; Li Y; Cheng T; Wang J; Pan H; Zhang Q
    Plant Mol Biol; 2018 May; 97(1-2):113-130. PubMed ID: 29736762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial control of flowering by DELLA proteins in Arabidopsis thaliana.
    Galvão VC; Horrer D; Küttner F; Schmid M
    Development; 2012 Nov; 139(21):4072-82. PubMed ID: 22992955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic regulation of flowering time in annual and perennial plants.
    Khan MR; Ai XY; Zhang JZ
    Wiley Interdiscip Rev RNA; 2014; 5(3):347-59. PubMed ID: 24357620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcriptome analysis of the floral transition in Rosa chinensis 'Old Blush' and R. odorata var. gigantea.
    Guo X; Yu C; Luo L; Wan H; Li Y; Wang J; Cheng T; Pan H; Zhang Q
    Sci Rep; 2017 Jul; 7(1):6068. PubMed ID: 28729527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. early in short days 4, a mutation in Arabidopsis that causes early flowering and reduces the mRNA abundance of the floral repressor FLC.
    Reeves PH; Murtas G; Dash S; Coupland G
    Development; 2002 Dec; 129(23):5349-61. PubMed ID: 12403707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nature of floral signals in Arabidopsis. II. Roles for FLOWERING LOCUS T (FT) and gibberellin.
    Hisamatsu T; King RW
    J Exp Bot; 2008; 59(14):3821-9. PubMed ID: 18931352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gibberellins Act Downstream of
    Tilmes V; Mateos JL; Madrid E; Vincent C; Severing E; Carrera E; López-Díaz I; Coupland G
    Plant Physiol; 2019 Jul; 180(3):1549-1563. PubMed ID: 31097676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis.
    Jung JH; Ju Y; Seo PJ; Lee JH; Park CM
    Plant J; 2012 Feb; 69(4):577-88. PubMed ID: 21988498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A repressor complex governs the integration of flowering signals in Arabidopsis.
    Li D; Liu C; Shen L; Wu Y; Chen H; Robertson M; Helliwell CA; Ito T; Meyerowitz E; Yu H
    Dev Cell; 2008 Jul; 15(1):110-20. PubMed ID: 18606145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.