BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19533253)

  • 1. Generation of a tumor spheroid in a microgravity environment as a 3D model of melanoma.
    Marrero B; Messina JL; Heller R
    In Vitro Cell Dev Biol Anim; 2009 Oct; 45(9):523-34. PubMed ID: 19533253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel spheroid-based co-culture model mimics loss of keratinocyte differentiation, melanoma cell invasion, and drug-induced selection of ABCB5-expressing cells.
    Klicks J; Maßlo C; Kluth A; Rudolf R; Hafner M
    BMC Cancer; 2019 Apr; 19(1):402. PubMed ID: 31035967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Melanoma (SK-MEL-2) Cell Growth between Three-Dimensional (3D) and Two-Dimensional (2D) Cell Cultures with Fourier Transform Infrared (FTIR) Microspectroscopy.
    Srisongkram T; Weerapreeyakul N; Thumanu K
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32531986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of 3D Tumor Spheroids with Encapsulating Basement Membranes for Invasion Studies.
    Nazari SS
    Curr Protoc Cell Biol; 2020 Jun; 87(1):e105. PubMed ID: 32436628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D is not enough: Building up a cell instructive microenvironment for tumoral stroma microtissues.
    Brancato V; Garziano A; Gioiella F; Urciuolo F; Imparato G; Panzetta V; Fusco S; Netti PA
    Acta Biomater; 2017 Jan; 47():1-13. PubMed ID: 27721010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Herpes Simplex Virus 1 Infection Promotes the Growth of a Subpopulation of Tumor Cells in Three-Dimensional Uveal Melanoma Cultures.
    Valyi-Nagy T; Fredericks B; Ravindra A; Hopkins J; Shukla D; Valyi-Nagy K
    J Virol; 2018 Oct; 92(19):. PubMed ID: 30045986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of an in vitro 3D PDAC stroma rich spheroid model.
    Ware MJ; Keshishian V; Law JJ; Ho JC; Favela CA; Rees P; Smith B; Mohammad S; Hwang RF; Rajapakshe K; Coarfa C; Huang S; Edwards DP; Corr SJ; Godin B; Curley SA
    Biomaterials; 2016 Nov; 108():129-42. PubMed ID: 27627810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three dimensional spheroid cell culture for nanoparticle safety testing.
    Sambale F; Lavrentieva A; Stahl F; Blume C; Stiesch M; Kasper C; Bahnemann D; Scheper T
    J Biotechnol; 2015 Jul; 205():120-9. PubMed ID: 25595712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Three-dimensional spheroid model for cultivating WB-F344 cells in simulated microgravity].
    Qu XJ; Li HX; Sun SD; Feng MF
    Sheng Wu Gong Cheng Xue Bao; 2006 Jul; 22(4):672-6. PubMed ID: 16894908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Aggregated Spheroid Model of Hepatocellular Carcinoma Using a 96-Pillar/Well Plate.
    Lee SY; Teng Y; Son M; Ku B; Hwang HJ; Tergaonkar V; Chow PK; Lee DW; Nam DH
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different Expression of Thyroid-Specific Proteins in Thyroid Cancer Cells between 2-Dimensional (2D) and 3-Dimensional (3D) Culture Environment.
    Oh JM; Gangadaran P; Rajendran RL; Hong CM; Lee J; Ahn BC
    Cells; 2022 Nov; 11(22):. PubMed ID: 36428988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spheroid model for functional osteogenic evaluation of human adipose derived stem cells.
    Gurumurthy B; Bierdeman PC; Janorkar AV
    J Biomed Mater Res A; 2017 Apr; 105(4):1230-1236. PubMed ID: 27943608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well-regulated spheroid formation.
    Yoshii Y; Waki A; Yoshida K; Kakezuka A; Kobayashi M; Namiki H; Kuroda Y; Kiyono Y; Yoshii H; Furukawa T; Asai T; Okazawa H; Gelovani JG; Fujibayashi Y
    Biomaterials; 2011 Sep; 32(26):6052-8. PubMed ID: 21640378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance.
    Fontoura JC; Viezzer C; Dos Santos FG; Ligabue RA; Weinlich R; Puga RD; Antonow D; Severino P; Bonorino C
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110264. PubMed ID: 31761183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The generation of pancreatic β-cell spheroids in a simulated microgravity culture system.
    Tanaka H; Tanaka S; Sekine K; Kita S; Okamura A; Takebe T; Zheng YW; Ueno Y; Tanaka J; Taniguchi H
    Biomaterials; 2013 Jul; 34(23):5785-91. PubMed ID: 23642538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S; Clary JM; Seliktar D; Lipke EA
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of hyper-compliant microparticles into a 3D melanoma tumor model.
    Shah MK; Leary EA; Darling EM
    J Biomech; 2019 Jan; 82():46-53. PubMed ID: 30392774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Non-small cell lung cancer 95D cells co-cultured with 3D-bioprinted scaffold to construct a lung cancer model in vitro].
    Mou H; Wang J; Hu H; Xu W; Chen Q
    Zhonghua Zhong Liu Za Zhi; 2015 Oct; 37(10):736-40. PubMed ID: 26813591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional printing of Hela cells for cervical tumor model in vitro.
    Zhao Y; Yao R; Ouyang L; Ding H; Zhang T; Zhang K; Cheng S; Sun W
    Biofabrication; 2014 Sep; 6(3):035001. PubMed ID: 24722236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homogeneous pancreatic cancer spheroids mimic growth pattern of circulating tumor cell clusters and macrometastases: displaying heterogeneity and crater-like structure on inner layer.
    Feng H; Ou BC; Zhao JK; Yin S; Lu AG; Oechsle E; Thasler WE
    J Cancer Res Clin Oncol; 2017 Sep; 143(9):1771-1786. PubMed ID: 28497169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.