BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 19533379)

  • 1. A defensin from tomato with dual function in defense and development.
    Stotz HU; Spence B; Wang Y
    Plant Mol Biol; 2009 Sep; 71(1-2):131-43. PubMed ID: 19533379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of telomere-binding protein gene expression represses seed and fruit development in tomato.
    Moriguchi R; Ohata K; Kanahama K; Takahashi H; Nishiyama M; Kanayama Y
    J Plant Physiol; 2011 Nov; 168(16):1927-33. PubMed ID: 21683470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Diversity and Highly Specific Host-Pathogen Transcriptional Regulation of Defensin Genes Is Revealed in Tomato.
    Nikoloudakis N; Pappi P; Markakis EA; Charova SN; Fanourakis D; Paschalidis K; Delis C; Tzortzakakis EA; Tsaniklidis G
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33317090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The antimicrobial peptide snakin-2 is upregulated in the defense response of tomatoes (Solanum lycopersicum) as part of the jasmonate-dependent signaling pathway.
    Herbel V; Sieber-Frank J; Wink M
    J Plant Physiol; 2017 Jan; 208():1-6. PubMed ID: 27888675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt.
    Abdallah NA; Shah D; Abbas D; Madkour M
    GM Crops; 2010; 1(5):344-50. PubMed ID: 21844692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39.
    Harel YM; Mehari ZH; Rav-David D; Elad Y
    Phytopathology; 2014 Feb; 104(2):150-7. PubMed ID: 24047252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato.
    Liu M; Zhang Z; Xu Z; Wang L; Chen C; Ren Z
    Plant Cell Rep; 2021 Jan; 40(1):43-58. PubMed ID: 32990799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and properties of floral defensins from ornamental tobacco and petunia.
    Lay FT; Brugliera F; Anderson MA
    Plant Physiol; 2003 Mar; 131(3):1283-93. PubMed ID: 12644678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato.
    Rahman TA; Oirdi ME; Gonzalez-Lamothe R; Bouarab K
    Mol Plant Microbe Interact; 2012 Dec; 25(12):1584-93. PubMed ID: 22950753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The expression of tgas118, encoding a defensin in Lycopersicon esculentum, is regulated by gibberellin.
    van den Heuvel KJ; Hulzink JM; Barendse GW; Wullems GJ
    J Exp Bot; 2001 Jul; 52(360):1427-36. PubMed ID: 11457902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea.
    Gonorazky G; Guzzo MC; Abd-El-Haliem AM; Joosten MH; Laxalt AM
    Mol Plant Pathol; 2016 Dec; 17(9):1354-1363. PubMed ID: 26868615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome Profiling Data of
    Srivastava DA; Arya GC; Pandaranayaka EP; Manasherova E; Prusky DB; Elad Y; Frenkel O; Harel A
    Mol Plant Microbe Interact; 2020 Sep; 33(9):1103-1107. PubMed ID: 32552519
    [No Abstract]   [Full Text] [Related]  

  • 13. Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance.
    Li X; Huang L; Zhang Y; Ouyang Z; Hong Y; Zhang H; Li D; Song F
    BMC Plant Biol; 2014 Oct; 14():286. PubMed ID: 25348703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea.
    Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C
    J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9-Mediated
    Shu P; Li Z; Min D; Zhang X; Ai W; Li J; Zhou J; Li Z; Li F; Li X
    J Agric Food Chem; 2020 May; 68(20):5529-5538. PubMed ID: 32372640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Tomato Defensin TPP3 Binds Phosphatidylinositol (4,5)-Bisphosphate via a Conserved Dimeric Cationic Grip Conformation To Mediate Cell Lysis.
    Baxter AA; Richter V; Lay FT; Poon IK; Adda CG; Veneer PK; Phan TK; Bleackley MR; Anderson MA; Kvansakul M; Hulett MD
    Mol Cell Biol; 2015 Jun; 35(11):1964-78. PubMed ID: 25802281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive analysis of multiprotein bridging factor 1 family genes and SlMBF1c negatively regulate the resistance to Botrytis cinerea in tomato.
    Zhang X; Xu Z; Chen L; Ren Z
    BMC Plant Biol; 2019 Oct; 19(1):437. PubMed ID: 31638895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea.
    Díaz J; ten Have A; van Kan JA
    Plant Physiol; 2002 Jul; 129(3):1341-51. PubMed ID: 12114587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4.
    Ferrari S; Plotnikova JM; De Lorenzo G; Ausubel FM
    Plant J; 2003 Jul; 35(2):193-205. PubMed ID: 12848825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transcription factor SlSHINE3 modulates defense responses in tomato plants.
    Buxdorf K; Rubinsky G; Barda O; Burdman S; Aharoni A; Levy M
    Plant Mol Biol; 2014 Jan; 84(1-2):37-47. PubMed ID: 23943056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.