These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 19533525)
1. Early microglial inhibition preemptively mitigates chronic pain development after experimental spinal cord injury. Tan AM; Zhao P; Waxman SG; Hains BC J Rehabil Res Dev; 2009; 46(1):123-33. PubMed ID: 19533525 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. Raghavendra V; Tanga F; DeLeo JA J Pharmacol Exp Ther; 2003 Aug; 306(2):624-30. PubMed ID: 12734393 [TBL] [Abstract][Full Text] [Related]
3. Role of spinal microglia in myositis-induced central sensitisation: an immunohistochemical and behavioural study in rats. Chacur M; Lambertz D; Hoheisel U; Mense S Eur J Pain; 2009 Oct; 13(9):915-23. PubMed ID: 19095475 [TBL] [Abstract][Full Text] [Related]
4. Minocycline prevents the development of neuropathic pain, but not acute pain: possible anti-inflammatory and antioxidant mechanisms. Padi SS; Kulkarni SK Eur J Pharmacol; 2008 Dec; 601(1-3):79-87. PubMed ID: 18952075 [TBL] [Abstract][Full Text] [Related]
5. Changes in electrophysiological properties and sodium channel Nav1.3 expression in thalamic neurons after spinal cord injury. Hains BC; Saab CY; Waxman SG Brain; 2005 Oct; 128(Pt 10):2359-71. PubMed ID: 16109750 [TBL] [Abstract][Full Text] [Related]
6. Minocycline neuroprotects, reduces microgliosis, and inhibits caspase protease expression early after spinal cord injury. Festoff BW; Ameenuddin S; Arnold PM; Wong A; Santacruz KS; Citron BA J Neurochem; 2006 Jun; 97(5):1314-26. PubMed ID: 16638021 [TBL] [Abstract][Full Text] [Related]
7. Minocycline attenuates mechanical allodynia and central sensitization following peripheral second-degree burn injury. Chang YW; Waxman SG J Pain; 2010 Nov; 11(11):1146-54. PubMed ID: 20418178 [TBL] [Abstract][Full Text] [Related]
8. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. Hains BC; Waxman SG J Neurosci; 2006 Apr; 26(16):4308-17. PubMed ID: 16624951 [TBL] [Abstract][Full Text] [Related]
9. Neuroprotective effect of Scutellaria baicalensis on spinal cord injury in rats. Yune TY; Lee JY; Cui CM; Kim HC; Oh TH J Neurochem; 2009 Aug; 110(4):1276-87. PubMed ID: 19519665 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of microglial activity alters spinal wide dynamic range neuron discharge and reduces microglial Toll-like receptor 4 expression in neuropathic rats. Nazemi S; Manaheji H; Noorbakhsh SM; Zaringhalam J; Sadeghi M; Mohammad-Zadeh M; Haghparast A Clin Exp Pharmacol Physiol; 2015 Jul; 42(7):772-9. PubMed ID: 25933029 [TBL] [Abstract][Full Text] [Related]
11. Minocycline-induced reduction of brain-derived neurotrophic factor expression in relation to cancer-induced bone pain in rats. Wang LN; Yang JP; Zhan Y; Ji FH; Wang XY; Zuo JL; Xu QN J Neurosci Res; 2012 Mar; 90(3):672-81. PubMed ID: 22057846 [TBL] [Abstract][Full Text] [Related]
12. Extracellular signal-regulated kinase-regulated microglia-neuron signaling by prostaglandin E2 contributes to pain after spinal cord injury. Zhao P; Waxman SG; Hains BC J Neurosci; 2007 Feb; 27(9):2357-68. PubMed ID: 17329433 [TBL] [Abstract][Full Text] [Related]
13. Modulation of thalamic nociceptive processing after spinal cord injury through remote activation of thalamic microglia by cysteine cysteine chemokine ligand 21. Zhao P; Waxman SG; Hains BC J Neurosci; 2007 Aug; 27(33):8893-902. PubMed ID: 17699671 [TBL] [Abstract][Full Text] [Related]
14. Effects of Etanercept and Minocycline in a rat model of spinal cord injury. Marchand F; Tsantoulas C; Singh D; Grist J; Clark AK; Bradbury EJ; McMahon SB Eur J Pain; 2009 Aug; 13(7):673-81. PubMed ID: 18849175 [TBL] [Abstract][Full Text] [Related]
15. Minocycline reduces lipopolysaccharide-induced neurological dysfunction and brain injury in the neonatal rat. Fan LW; Pang Y; Lin S; Tien LT; Ma T; Rhodes PG; Cai Z J Neurosci Res; 2005 Oct; 82(1):71-82. PubMed ID: 16118791 [TBL] [Abstract][Full Text] [Related]
16. The cellular inflammatory response in human spinal cords after injury. Fleming JC; Norenberg MD; Ramsay DA; Dekaban GA; Marcillo AE; Saenz AD; Pasquale-Styles M; Dietrich WD; Weaver LC Brain; 2006 Dec; 129(Pt 12):3249-69. PubMed ID: 17071951 [TBL] [Abstract][Full Text] [Related]
17. Minocycline and intracerebral hemorrhage: influence of injury severity and delay to treatment. Szymanska A; Biernaskie J; Laidley D; Granter-Button S; Corbett D Exp Neurol; 2006 Jan; 197(1):189-96. PubMed ID: 16259983 [TBL] [Abstract][Full Text] [Related]
18. Effects of polyethylene glycol and magnesium sulfate administration on clinically relevant neurological outcomes after spinal cord injury in the rat. Ditor DS; John SM; Roy J; Marx JC; Kittmer C; Weaver LC J Neurosci Res; 2007 May; 85(7):1458-67. PubMed ID: 17410603 [TBL] [Abstract][Full Text] [Related]
19. Systemic administration of minocycline inhibits formalin-induced inflammatory pain in rat. Cho IH; Chung YM; Park CK; Park SH; Lee H; Kim D; Piao ZG; Choi SY; Lee SJ; Park K; Kim JS; Jung SJ; Oh SB Brain Res; 2006 Feb; 1072(1):208-14. PubMed ID: 16427032 [TBL] [Abstract][Full Text] [Related]
20. Fractalkine and minocycline alter neuronal activity in the spinal cord dorsal horn. Owolabi SA; Saab CY FEBS Lett; 2006 Aug; 580(18):4306-10. PubMed ID: 16842787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]