BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 195336)

  • 21. Daily rhythm in pineal phosphodiesterase (PDE) activity reflects adrenergic/3',5'-cyclic adenosine 5'-monophosphate induction of the PDE4B2 variant.
    Kim JS; Bailey MJ; Ho AK; Møller M; Gaildrat P; Klein DC
    Endocrinology; 2007 Apr; 148(4):1475-85. PubMed ID: 17204557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cyclic nucleotides in bone and mineral metabolism.
    Peck WA; Klahr S
    Adv Cyclic Nucleotide Res; 1979; 11():89-130. PubMed ID: 227250
    [No Abstract]   [Full Text] [Related]  

  • 23. Alpha 1-adrenergic potentiation of vasoactive intestinal peptide stimulation of rat pinealocyte adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate: evidence for a role of calcium and protein kinase-C.
    Chik CL; Ho AK; Klein DC
    Endocrinology; 1988 Feb; 122(2):702-8. PubMed ID: 2892667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rhythmic variation in beta1-adrenergic receptor mRNA levels in the rat pineal gland: circadian and developmental regulation.
    Pfeffer M; Kühn R; Krug L; Korf HW; Stehle JH
    Eur J Neurosci; 1998 Sep; 10(9):2896-904. PubMed ID: 9758159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of phosphodiesterases III and IV in the modulation of vascular cyclic AMP content by the NO/cyclic GMP pathway.
    Eckly AE; Lugnier C
    Br J Pharmacol; 1994 Oct; 113(2):445-50. PubMed ID: 7834194
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction between alpha- and beta-adrenoceptors in rat pineal adenosine cyclic 3',5'-monophosphate phosphodiesterase activation.
    Vacas MI; Keller Sarmiento MI; Cardinali DP
    J Neural Transm; 1985; 62(3-4):295-304. PubMed ID: 2993508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subsensitivity of the beta-adrenergic receptor-linked adenylate cyclase system of rat pineal gland following repeated treatment with desmethylimipramine and nialamide.
    Moyer JA; Greenberg LH; Frazer A; Weiss B
    Mol Pharmacol; 1981 Mar; 19(2):187-93. PubMed ID: 6262613
    [No Abstract]   [Full Text] [Related]  

  • 28. Intracellular pH on adrenergic-stimulated cAMP and cGMP production in rat pinealocytes.
    Ho AK; Girard M; Young I; Chik CL
    Am J Physiol; 1991 Oct; 261(4 Pt 1):C642-9. PubMed ID: 1656768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of the effects of biogenic amines on cyclic GMP and cycle AMP levels in mouse cerebellum in vitro.
    Ferrendelli JA; Kinscherf DA; Chang MM; Morgan JF
    Brain Res; 1975 Jan; 84(1):63-73. PubMed ID: 234274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclic nucleotide metabolism in pineal homogenates.
    Sweat FW; Carmack CF; Jewell LS
    J Pineal Res; 1988; 5(4):333-44. PubMed ID: 2905388
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cyclic nucleotide phosphodiesterases in dystrophic rat retinas: guanosine 3',5' cyclic monophosphate anomalies during photoreceptor cell degeneration.
    Lolley RN; Farber DB
    Exp Eye Res; 1975 Jun; 20(6):585-97. PubMed ID: 168094
    [No Abstract]   [Full Text] [Related]  

  • 32. Ultrastructural cytochemistry and pharmacology of 5-hydroxytryptamine in adrenergic nerve endings. 3. Selective increase of norepinephrine in the rat pineal gland consecutive to depletion of neuronal 5-hydroxytryptamine.
    Jaim-Etcheverry G; Zeiher LM
    J Pharmacol Exp Ther; 1971 Jul; 178(1):42-8. PubMed ID: 4253294
    [No Abstract]   [Full Text] [Related]  

  • 33. Heat-stable low molecular weight form of phosphodiesterases from bovine pineal gland.
    Sankaran K; Hanbauer I; Lovenberg W
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3188-91. PubMed ID: 210451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of brain nitric oxide synthase in the developing rat pineal gland coincides with the appearance of the adrenergic cyclic guanosine 3',5'-monophosphate response.
    Layes E; Schollmayer A; Spessert R; Vollrath L
    Neurosci Lett; 1996 Jul; 212(1):71-3. PubMed ID: 8823766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adrenal medullary cyclic nucleotide phosphodiesterase. Subcellular distribution, partial purification and regulation of enzyme activity.
    Egrie JC; Siegel FL
    Biochim Biophys Acta; 1977 Aug; 483(2):348-66. PubMed ID: 196651
    [No Abstract]   [Full Text] [Related]  

  • 36. The phototransduction cascade in the isolated chick pineal gland revisited.
    Holthues H; Vollrath L
    Brain Res; 2004 Mar; 999(2):175-80. PubMed ID: 14759496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pineal nitric oxide synthase: characteristics, adrenergic regulation and function.
    Lin AM; Schaad NC; Schulz PE; Coon SL; Klein DC
    Brain Res; 1994 Jul; 651(1-2):160-8. PubMed ID: 7522930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. See-saw signal processing in pinealocytes involves reciprocal changes in the alpha 1-adrenergic component of the cyclic GMP response and the beta-adrenergic component of the cyclic AMP response.
    Vanecek J; Sugden D; Weller JL; Klein DC
    J Neurochem; 1986 Sep; 47(3):678-86. PubMed ID: 3016179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the relationship between autoinhibition of norepinephrine release and cyclic GMP metabolism in rat pineal glands.
    Quenzer LF; Volle RL
    J Auton Nerv Syst; 1983 Jun; 8(2):161-4. PubMed ID: 6194200
    [No Abstract]   [Full Text] [Related]  

  • 40. Cyclic nucleotides in stroke and related cerebrovascular disorders.
    Palmer GC
    Life Sci; 1985 May; 36(21):1995-2006. PubMed ID: 2860549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.