BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 19533693)

  • 41. Catalytic asymmetric cyclocarbonylation of o-isopropenylphenols: enantioselective synthesis of six-membered ring lactones.
    Dong C; Alper H
    J Org Chem; 2004 Jul; 69(15):5011-4. PubMed ID: 15255729
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enantioselective synthesis of indoloquinolizidines via asymmetric catalytic hydrogenation/lactamization of imino diesters.
    Liu Y; Wang Q; Zhang Y; Huang J; Nie L; Chen J; Cao W; Wu X
    J Org Chem; 2013 Dec; 78(23):12009-17. PubMed ID: 24195678
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of γ-, δ-, and ε-lactams by asymmetric transfer hydrogenation of N-(tert-butylsulfinyl)iminoesters.
    Guijarro D; Pablo Ó; Yus M
    J Org Chem; 2013 Apr; 78(8):3647-54. PubMed ID: 23535067
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intramolecular pyridine activation-dearomatization reaction: highly stereoselective synthesis of polysubstituted indolizidines and quinolizidines.
    Barbe G; Pelletier G; Charette AB
    Org Lett; 2009 Aug; 11(15):3398-401. PubMed ID: 19719187
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Au(I)-catalyzed annulation of enantioenriched allenes in the enantioselective total synthesis of (-)-rhazinilam.
    Liu Z; Wasmuth AS; Nelson SG
    J Am Chem Soc; 2006 Aug; 128(32):10352-3. PubMed ID: 16895385
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthetic applications of sulfur-substituted indolizidines and quinolizidines.
    Chou SS; Chung YC; Chen PA; Chiang SL; Wu CJ
    J Org Chem; 2011 Jan; 76(2):692-5. PubMed ID: 21162589
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Organocatalyzed enantioselective one-pot three-component access to indoloquinolizidines by a Michael addition-Pictet-Spengler sequence.
    Wu X; Dai X; Nie L; Fang H; Chen J; Ren Z; Cao W; Zhao G
    Chem Commun (Camb); 2010 Apr; 46(16):2733-5. PubMed ID: 20369165
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Asymmetric alkaloid synthesis: a one-pot organocatalytic reaction to quinolizidine derivatives.
    Franzén J; Fisher A
    Angew Chem Int Ed Engl; 2009; 48(4):787-91. PubMed ID: 19090516
    [No Abstract]   [Full Text] [Related]  

  • 49. Ruthenium-catalyzed stereoselective intramolecular carbenoid C-H insertion for beta- and gamma-lactam formations by decomposition of alpha-diazoacetamides.
    Choi MK; Yu WY; Che CM
    Org Lett; 2005 Mar; 7(6):1081-4. PubMed ID: 15760144
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A stereoselective cyclization strategy for the preparation of γ-lactams and their use in the synthesis of α-methyl-β-proline.
    Banerjee S; Smith J; Smith J; Faulkner C; Masterson DS
    J Org Chem; 2012 Dec; 77(23):10925-30. PubMed ID: 23126540
    [TBL] [Abstract][Full Text] [Related]  

  • 51. One-pot synthesis of chiral α-methylene-γ-lactams with excellent diastereoselectivities and enantioselectivities.
    Shen A; Liu M; Jia ZS; Xu MH; Lin GQ
    Org Lett; 2010 Nov; 12(22):5154-7. PubMed ID: 20979375
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid assembly of quinolizidines via consecutive nucleophilic cyclizations onto activated amides.
    Bélanger G; O'Brien G; Larouche-Gauthier R
    Org Lett; 2011 Aug; 13(16):4268-71. PubMed ID: 21755913
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Expedient enantioselective synthesis of cermizine D.
    Veerasamy N; Carlson EC; Carter RG
    Org Lett; 2012 Mar; 14(6):1596-9. PubMed ID: 22372610
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Radical Cation Salt-Promoted Catalytic Aerobic sp(3) C-H Oxidation: Construction of Quinoline-Fused Lactones and Lactams.
    Wang Y; Peng F; Liu J; Huo C; Wang X; Jia X
    J Org Chem; 2015 Jan; 80(1):609-14. PubMed ID: 25470759
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A rapid divergent synthesis of highly substituted delta-lactones.
    Dieter RK; Guo F
    Org Lett; 2006 Oct; 8(21):4779-82. PubMed ID: 17020301
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A dual-catalysis approach to the asymmetric Steglich rearrangement and catalytic enantioselective addition of O-acylated azlactones to isoquinolines.
    De CK; Mittal N; Seidel D
    J Am Chem Soc; 2011 Oct; 133(42):16802-5. PubMed ID: 21958450
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Organocatalytic ring expansion of beta-lactams to gamma-lactams through a novel N1-C4 bond cleavage. direct synthesis of enantiopure succinimide derivatives.
    Alcaide B; Almendros P; Cabrero G; Ruiz MP
    Org Lett; 2005 Sep; 7(18):3981-4. PubMed ID: 16119947
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Applications of the amino-Cope rearrangement: synthesis of tetrahydropyran, delta-lactone and piperidine targets.
    Allin SM; Essat M; Pita CH; Baird RD; McKee V; Elsegood M; Edgar M; Andrews DM; Shah P; Aspinall I
    Org Biomol Chem; 2005 Mar; 3(5):809-15. PubMed ID: 15731867
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enantioselective Henry addition of methyl 4-nitrobutyrate to aldehydes. Chiral building blocks for 2-pyrrolidinones and other derivatives.
    Blay G; Hernández-Olmos V; Pedro JR
    Org Lett; 2010 Jul; 12(13):3058-61. PubMed ID: 20536220
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of a new dimeric cyclophane ligand: application to enhanced diastereo- and enantioselectivity in the catalytic synthesis of beta-lactams.
    Wack H; France S; Hafez AM; Drury WJ; Weatherwax A; Lectka T
    J Org Chem; 2004 Jun; 69(13):4531-3. PubMed ID: 15202914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.