These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 19533719)

  • 1. Bipartite tetracysteine display requires site flexibility for ReAsH coordination.
    Goodman JL; Fried DB; Schepartz A
    Chembiochem; 2009 Jul; 10(10):1644-7. PubMed ID: 19533719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hairpin structure of a biarsenical-tetracysteine motif determined by NMR spectroscopy.
    Madani F; Lind J; Damberg P; Adams SR; Tsien RY; Gräslund AO
    J Am Chem Soc; 2009 Apr; 131(13):4613-5. PubMed ID: 19281235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rotamer-Restricted Fluorogenicity of the Bis-Arsenical ReAsH.
    Walker AS; Rablen PR; Schepartz A
    J Am Chem Soc; 2016 Jun; 138(22):7143-50. PubMed ID: 27163487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surveying protein structure and function using bis-arsenical small molecules.
    Scheck RA; Schepartz A
    Acc Chem Res; 2011 Sep; 44(9):654-65. PubMed ID: 21766813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surveying polypeptide and protein domain conformation and association with FlAsH and ReAsH.
    Luedtke NW; Dexter RJ; Fried DB; Schepartz A
    Nat Chem Biol; 2007 Dec; 3(12):779-84. PubMed ID: 17982447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific labeling of the type 1 ryanodine receptor using biarsenical fluorophores targeted to engineered tetracysteine motifs.
    Fessenden JD; Mahalingam M
    PLoS One; 2013; 8(5):e64686. PubMed ID: 23724080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biarsenical dye Lumio exhibits a reduced ability to specifically detect tetracysteine-containing proteins within live cells.
    Hearps AC; Pryor MJ; Kuusisto HV; Rawlinson SM; Piller SC; Jans DA
    J Fluoresc; 2007 Nov; 17(6):593-7. PubMed ID: 17805945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity.
    Martin BR; Giepmans BN; Adams SR; Tsien RY
    Nat Biotechnol; 2005 Oct; 23(10):1308-14. PubMed ID: 16155565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ReAsH/FlAsH labeling and image analysis of tetracysteine sensor proteins in cells.
    Irtegun S; Ramdzan YM; Mulhern TD; Hatters DM
    J Vis Exp; 2011 Aug; (54):. PubMed ID: 21897361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of the membrane-permeant biarsenicals FlAsH-EDT2 and ReAsH-EDT2 for fluorescent labeling of tetracysteine-tagged proteins.
    Adams SR; Tsien RY
    Nat Protoc; 2008; 3(9):1527-34. PubMed ID: 18772880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flash labeling of a nuclear receptor domain (D domain of ultraspiracle) fused to tetracysteine tag.
    Szécsi M; Spindler-Barth M
    Acta Biol Hung; 2006 Jun; 57(2):181-90. PubMed ID: 16841469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification of tetracysteine-tagged proteins by affinity chromatography using a non-fluorescent, photochemically stable bisarsenical affinity ligand.
    Ying LQ; Branchaud BP
    Bioconjug Chem; 2011 May; 22(5):987-92. PubMed ID: 21480579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ReAsH: another viable option for in vivo protein labelling in Dictyostelium.
    Hwang RD; Chen CC; Knecht DA
    J Microsc; 2009 Apr; 234(1):9-15. PubMed ID: 19335452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ReAsH as a Quantitative Probe of In-Cell Protein Dynamics.
    Gelman H; Wirth AJ; Gruebele M
    Biochemistry; 2016 Apr; 55(13):1968-76. PubMed ID: 26959408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The high Zn(II) affinity of the tetracysteine tag affects its fluorescent labeling with biarsenicals.
    Pomorski A; Otlewski J; Krezel A
    Chembiochem; 2010 Jun; 11(9):1214-8. PubMed ID: 20440728
    [No Abstract]   [Full Text] [Related]  

  • 16. Interactions of AsCy3 with cysteine-rich peptides.
    Alexander SC; Schepartz A
    Org Lett; 2014 Jul; 16(14):3824-7. PubMed ID: 24999741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using FlAsH to probe conformational changes in a large HEAT repeat protein.
    Tsytlonok M; Itzhaki LS
    Chembiochem; 2012 May; 13(8):1199-205. PubMed ID: 22539214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Bipartite Tetracysteine PNA Probes for DNA In Situ Fluorescent Labeling.
    Fang GM; Seitz O
    Curr Protoc Nucleic Acid Chem; 2017 Dec; 71():4.78.1-4.78.14. PubMed ID: 29275539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospecting the proteome: identification of naturally occurring binding motifs for biarsenical probes.
    Wang T; Yan P; Squier TC; Mayer MU
    Chembiochem; 2007 Nov; 8(16):1937-40. PubMed ID: 17828727
    [No Abstract]   [Full Text] [Related]  

  • 20. FACS-based selection of tandem tetracysteine peptides with improved ReAsH brightness in live cells.
    Van Engelenburg SB; Nahreini T; Palmer AE
    Chembiochem; 2010 Mar; 11(4):489-93. PubMed ID: 20099291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.