These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 19534105)

  • 21. Quantitative geochemical modelling using leaching tests: application for coal ashes produced by two South African thermal processes.
    Hareeparsad S; Tiruta-Barna L; Brouckaert CJ; Buckley CA
    J Hazard Mater; 2011 Feb; 186(2-3):1163-73. PubMed ID: 21208742
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How toxic is coal ash? A laboratory toxicity case study.
    Sherrard RM; Carriker NE; Greeley MS
    Integr Environ Assess Manag; 2015 Jan; 11(1):5-9. PubMed ID: 25348557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial and temporal trends in contaminant concentrations in Hexagenia nymphs following a coal ash spill at the Tennessee Valley Authority's Kingston Fossil Plant.
    Smith JG; Baker TF; Murphy CA; Jett RT
    Environ Toxicol Chem; 2016 May; 35(5):1159-71. PubMed ID: 26387560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The geochemistry and bioreactivity of fly-ash from coal-burning power stations.
    Jones T; Wlodarczyk A; Koshy L; Brown P; Shao L; BéruBé K
    Biomarkers; 2009 Jul; 14 Suppl 1():45-8. PubMed ID: 19604058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial differences in trace element bioaccumulation in turtles exposed to a partially remediated coal fly ash spill.
    Van Dyke JU; Jachowski CM; Steen DA; Jackson BP; Hopkins WA
    Environ Toxicol Chem; 2017 Jan; 36(1):201-211. PubMed ID: 27291332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An emerging pollutant contributing to the cytotoxicity of MSWI ash wastes: strontium.
    Huang WJ; Tang HC; Lin KL; Liao MH
    J Hazard Mater; 2010 Jan; 173(1-3):597-604. PubMed ID: 19762147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Experimental study on emission characteristics of PM10 in coal-fired boilers].
    Guo X; Chen D; Zheng CG; Sui JC; Xu MH
    Huan Jing Ke Xue; 2008 Mar; 29(3):587-92. PubMed ID: 18649512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of a leaching test framework for coal fly ash accounting for environmental conditions.
    Zandi M; Russell NV
    Environ Monit Assess; 2007 Aug; 131(1-3):509-26. PubMed ID: 17171257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.
    He J; Duan C; Lei M; Zhu X
    Environ Technol; 2016; 37(1):28-38. PubMed ID: 26121324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Damage cost of the Dan River coal ash spill.
    Dennis Lemly A
    Environ Pollut; 2015 Feb; 197():55-61. PubMed ID: 25497306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic susceptibility measurements to detect coal fly ash from the Kingston Tennessee spill in Watts Bar Reservoir.
    Cowan EA; Seramur KC; Hageman SJ
    Environ Pollut; 2013 Mar; 174():179-88. PubMed ID: 23266939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effect of different extractants on leaching characteristics of the fly ash from municipal solid waste incinerator].
    Jiang YH; Xi BD; Li XJ; Zhang XX; Wei ZM
    Huan Jing Ke Xue; 2007 Oct; 28(10):2400-3. PubMed ID: 18269012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Environmental impacts of the Tennessee Valley Authority Kingston coal ash spill. 2. Effect of coal ash on methylmercury in historically contaminated river sediments.
    Deonarine A; Bartov G; Johnson TM; Ruhl L; Vengosh A; Hsu-Kim H
    Environ Sci Technol; 2013 Feb; 47(4):2100-8. PubMed ID: 23249246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Partitioning and source diagnostics of polycyclic aromatic hydrocarbons in rivers in Tianjin, China.
    Shi Z; Tao S; Pan B; Liu WX; Shen WR
    Environ Pollut; 2007 Mar; 146(2):492-500. PubMed ID: 17000038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of organic compounds leached from municipal incinerator fly ash by water at different pH levels.
    Karasek FW; Charbonneau GM; Reuel GJ; Tong HY
    Anal Chem; 1987 Apr; 59(7):1027-31. PubMed ID: 3592212
    [No Abstract]   [Full Text] [Related]  

  • 36. Concentrations of radionuclides of size fractionated fly-ash emissions from a thermal power plant using Taiwan coal.
    Weng YH; Chu TC
    J Radiat Res; 1992 Jun; 33(2):141-50. PubMed ID: 1404060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of radiological emissions from Spanish coal power plants: radioactive releases and associated risks.
    Alvarez MC; Garzon L
    Health Phys; 1989 Nov; 57(5):765-9. PubMed ID: 2592210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cadmium and lead accumulation by goldfish exposed to aqueous refuse incinerator fly ash leachate.
    Bache CA; Lisk DJ
    Bull Environ Contam Toxicol; 1989 Dec; 43(6):846-9. PubMed ID: 2597788
    [No Abstract]   [Full Text] [Related]  

  • 39. An urgent need for an EPA standard for disposal of coal ash.
    Lemly AD
    Environ Pollut; 2014 Aug; 191():253-5. PubMed ID: 24836055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ecological risk assessment for residual coal fly ash at Watts Bar Reservoir, Tennessee.
    Carriker NE; Jones DS; Walls SJ; Stojak AR
    Integr Environ Assess Manag; 2015 Jan; 11(1):80-7. PubMed ID: 25346032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.