These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 19534124)

  • 1. Iron-monosulfide oxidation in natural sediments: resolving microbially mediated S transformations using XANES, electron microscopy, and selective extractions.
    Burton ED; Bush RT; Sullivan LA; Hocking RK; Mitchell DR; Johnston SG; Fitzpatrick RW; Raven M; McClure S; Jang LY
    Environ Sci Technol; 2009 May; 43(9):3128-34. PubMed ID: 19534124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid-volatile sulfide oxidation in coastal flood plain drains: iron-sulfur cycling and effects on water quality.
    Burton ED; Bush RT; Sullivan LA
    Environ Sci Technol; 2006 Feb; 40(4):1217-22. PubMed ID: 16572778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uranium(VI) reduction by iron(II) monosulfide mackinawite.
    Hyun SP; Davis JA; Sun K; Hayes KF
    Environ Sci Technol; 2012 Mar; 46(6):3369-76. PubMed ID: 22316012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic sorption to nanoparticulate mackinawite (FeS): An examination of phosphate competition.
    Niazi NK; Burton ED
    Environ Pollut; 2016 Nov; 218():111-117. PubMed ID: 27552044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfur K-edge XANES and acid volatile sulfide analyses of changes in chemical speciation of S and Fe during sequential extraction of trace metals in anoxic sludge from biogas reactors.
    Shakeri Yekta S; Gustavsson J; Svensson BH; Skyllberg U
    Talanta; 2012 Jan; 89():470-7. PubMed ID: 22284519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seawater-induced mobilization of trace metals from mackinawite-rich estuarine sediments.
    Wong VN; Johnston SG; Burton ED; Bush RT; Sullivan LA; Slavich PG
    Water Res; 2013 Feb; 47(2):821-32. PubMed ID: 23199454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential utilization and transformation of sulfur allotropes, μ-S and α-S8, by moderate thermoacidophile Sulfobacillus thermosulfidooxidans.
    Nie ZY; Liu HC; Xia JL; Zhu HR; Ma CY; Zheng L; Zhao YD; Qiu GZ
    Res Microbiol; 2014 Oct; 165(8):639-46. PubMed ID: 25261719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron monosulfide as a scavenger for dissolved hexavalent chromium and cadmium.
    Jo S; Lee JY; Kong SH; Choi J; Park JW
    Environ Technol; 2008 Sep; 29(9):975-83. PubMed ID: 18844124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speciation of sulfur from filamentous microbial mats from sulfidic cave springs using X-ray absorption near-edge spectroscopy.
    Engel AS; Lichtenberg H; Prange A; Hormes J
    FEMS Microbiol Lett; 2007 Apr; 269(1):54-62. PubMed ID: 17227465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductive dehalogenation of halomethanes in iron- and sulfate-reducing sediments. 1. Reactivity pattern analysis.
    Kenneke JF; Weber EI
    Environ Sci Technol; 2003 Feb; 37(4):713-20. PubMed ID: 12636269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
    Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of arsenic in offshore sediment under the impact of anaerobic microbial activities.
    Xu L; Zhao Z; Wang S; Pan R; Jia Y
    Water Res; 2011 Dec; 45(20):6781-8. PubMed ID: 22071325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite.
    Burton ED; Johnston SG; Kraal P; Bush RT; Claff S
    Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced inorganic sulfur speciation in drain sediments from acid sulfate soil landscapes.
    Burton ED; Bush RT; Sullivan LA
    Environ Sci Technol; 2006 Feb; 40(3):888-93. PubMed ID: 16509333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy.
    Li W; Joshi SR; Hou G; Burdige DJ; Sparks DL; Jaisi DP
    Environ Sci Technol; 2015 Jan; 49(1):203-11. PubMed ID: 25469633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic mobility during flooding of contaminated soil: the effect of microbial sulfate reduction.
    Burton ED; Johnston SG; Kocar BD
    Environ Sci Technol; 2014 Dec; 48(23):13660-7. PubMed ID: 25346449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic ammonium oxidation linked to sulfate and ferric iron reduction fuels nitrogen loss in marine sediments.
    Rios-Del Toro EE; Valenzuela EI; López-Lozano NE; Cortés-Martínez MG; Sánchez-Rodríguez MA; Calvario-Martínez O; Sánchez-Carrillo S; Cervantes FJ
    Biodegradation; 2018 Oct; 29(5):429-442. PubMed ID: 29948518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mackinawite (FeS) reduces mercury(II) under sulfidic conditions.
    Bone SE; Bargar JR; Sposito G
    Environ Sci Technol; 2014 Sep; 48(18):10681-9. PubMed ID: 25180562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron(II) monosulfide (FeS) minerals reductively transform the insensitive munitions compounds 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO).
    Menezes O; Yu Y; Root RA; Gavazza S; Chorover J; Sierra-Alvarez R; Field JA
    Chemosphere; 2021 Dec; 285():131409. PubMed ID: 34271466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of u(VI) and geochemical control of u(VI) bioavailability.
    Wu WM; Carley J; Gentry T; Ginder-Vogel MA; Fienen M; Mehlhorn T; Yan H; Caroll S; Pace MN; Nyman J; Luo J; Gentile ME; Fields MW; Hickey RF; Gu B; Watson D; Cirpka OA; Zhou J; Fendorf S; Kitanidis PK; Jardine PM; Criddle CS
    Environ Sci Technol; 2006 Jun; 40(12):3986-95. PubMed ID: 16830572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.