These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 19534160)

  • 21. Phenol-degrading anode biofilm with high coulombic efficiency in graphite electrodes microbial fuel cell.
    Zhang D; Li Z; Zhang C; Zhou X; Xiao Z; Awata T; Katayama A
    J Biosci Bioeng; 2017 Mar; 123(3):364-369. PubMed ID: 27979700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduction of start-up time through bioaugmentation process in microbial fuel cells using an isolate from dark fermentative spent media fed anode.
    Pandit S; Khilari S; Roy S; Ghangrekar MM; Pradhan D; Das D
    Water Sci Technol; 2015; 72(1):106-15. PubMed ID: 26114278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Isolation and characterization of electrochemical active bacterial Pseudomonas aeruginosa strain RE7].
    Luo HP; Liu GL; Zhang RD; Cao LX
    Huan Jing Ke Xue; 2009 Jul; 30(7):2118-23. PubMed ID: 19775018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient sulfur cycling improved the performance of flowback water treatment in a microbial fuel cell.
    Zhang X; Wei S; Zhang D; Lu P; Huang Y
    J Environ Manage; 2022 Dec; 323():116368. PubMed ID: 36261973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur.
    Canfield DE; Thamdrup B
    Science; 1994 Dec; 266():1973-5. PubMed ID: 11540246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of malodorous hydrogen sulfide compounds using microbial fuel cell.
    Eaktasang N; Min HS; Kang C; Kim HS
    Bioprocess Biosyst Eng; 2013 Oct; 36(10):1417-25. PubMed ID: 23297068
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The anodic potential shaped a cryptic sulfur cycling with forming thiosulfate in a microbial fuel cell treating hydraulic fracturing flowback water.
    Zhang X; Zhang D; Huang Y; Wu S; Lu P
    Water Res; 2020 Oct; 185():116270. PubMed ID: 32784035
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variations of electron flux and microbial community in air-cathode microbial fuel cells fed with different substrates.
    Yu J; Park Y; Cho H; Chun J; Seon J; Cho S; Lee T
    Water Sci Technol; 2012; 66(4):748-53. PubMed ID: 22766862
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Power production and wastewater treatment simultaneously by dual-chamber microbial fuel cell technique.
    Izadi P; Rahimnejad M; Ghoreyshi A
    Biotechnol Appl Biochem; 2015; 62(4):483-8. PubMed ID: 25640146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coupled substrate removal and electricity generation in microbial fuel cells simultaneously treating sulfide and nitrate at various influent sulfide to nitrate ratios.
    Cai J; Qaisar M; Sun Y; Wang K; Lou J; Wang R
    Bioresour Technol; 2020 Jun; 306():123174. PubMed ID: 32197955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of bioelectricity in microbial fuel cells with aerobic and anaerobic anodes.
    Chen CY; Chen TY; Chung YC
    Environ Technol; 2014; 35(1-4):286-93. PubMed ID: 24600867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Harnessing microbially generated power on the seafloor.
    Tender LM; Reimers CE; Stecher HA; Holmes DE; Bond DR; Lowy DA; Pilobello K; Fertig SJ; Lovley DR
    Nat Biotechnol; 2002 Aug; 20(8):821-5. PubMed ID: 12091916
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell.
    Shimoyama T; Komukai S; Yamazawa A; Ueno Y; Logan BE; Watanabe K
    Appl Microbiol Biotechnol; 2008 Aug; 80(2):325-30. PubMed ID: 18581110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioleaching of copper sulfide minerals assisted by microbial fuel cells.
    Huang T; Wei X; Zhang S
    Bioresour Technol; 2019 Sep; 288():121561. PubMed ID: 31152952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electricity production coupled to ammonium in a microbial fuel cell.
    He Z; Kan J; Wang Y; Huang Y; Mansfeld F; Nealson KH
    Environ Sci Technol; 2009 May; 43(9):3391-7. PubMed ID: 19534163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm.
    Zhuang L; Zhou S; Yuan Y; Liu T; Wu Z; Cheng J
    Bioresour Technol; 2011 Jan; 102(1):284-9. PubMed ID: 20598528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells.
    Huang L; Logan BE
    Appl Microbiol Biotechnol; 2008 Sep; 80(4):655-64. PubMed ID: 18626640
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Haloalkaliphilic microorganisms assist sulfide removal in a microbial electrolysis cell.
    Ni G; Harnawan P; Seidel L; Ter Heijne A; Sleutels T; Buisman CJN; Dopson M
    J Hazard Mater; 2019 Feb; 363():197-204. PubMed ID: 30308358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced current production by Desulfovibrio desulfuricans biofilm in a mediator-less microbial fuel cell.
    Kang CS; Eaktasang N; Kwon DY; Kim HS
    Bioresour Technol; 2014 Aug; 165():27-30. PubMed ID: 24751374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing Electricity Generation Using a Laccase-Based Microbial Fuel Cell with Yeast
    Chaijak P; Sukkasem C; Lertworapreecha M; Boonsawang P; Wijasika S; Sato C
    J Microbiol Biotechnol; 2018 Aug; 28(8):1360-1366. PubMed ID: 30021424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.