These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19534431)

  • 1. [Meiotic abnormalities as expression of nuclear-cytoplasmic incompatibility in crosses of Pisum sativum subspecies].
    Bogdanova VS; Galieva ER
    Genetika; 2009 May; 45(5):711-6. PubMed ID: 19534431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic analysis of nuclear-cytoplasmic incompatibility in pea associated with cytoplasm of an accession of wild subspecies Pisum sativum subsp. elatius (Bieb.) Schmahl.
    Bogdanova VS; Galieva ER; Kosterin OE
    Theor Appl Genet; 2009 Feb; 118(4):801-9. PubMed ID: 19099285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inheritance and genetic mapping of two nuclear genes involved in nuclear-cytoplasmic incompatibility in peas (Pisum sativum L.).
    Bogdanova VS; Galieva ER; Yadrikhinskiy AK; Kosterin OE
    Theor Appl Genet; 2012 May; 124(8):1503-12. PubMed ID: 22318398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inheritance of organelle DNA markers in a pea cross associated with nuclear-cytoplasmic incompatibility.
    Bogdanova VS
    Theor Appl Genet; 2007 Jan; 114(2):333-9. PubMed ID: 17080258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wild peas vary in their cross-compatibility with cultivated pea (Pisum sativum subsp. sativum L.) depending on alleles of a nuclear-cytoplasmic incompatibility locus.
    Bogdanova VS; Kosterin OE; Yadrikhinskiy AK
    Theor Appl Genet; 2014 May; 127(5):1163-72. PubMed ID: 24619163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discordant evolution of organellar genomes in peas (Pisum L.).
    Bogdanova VS; Shatskaya NV; Mglinets AV; Kosterin OE; Vasiliev GV
    Mol Phylogenet Evol; 2021 Jul; 160():107136. PubMed ID: 33684529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allelic Diversity of Acetyl Coenzyme A Carboxylase
    Nováková E; Zablatzká L; Brus J; Nesrstová V; Hanáček P; Kalendar R; Cvrčková F; Majeský Ľ; Smýkal P
    Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30974846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear-cytoplasm conflict in crosses of pea subspecies is controlled by alleles of a nuclear gene on linkage group III.
    Yadrikhinskiy AK; Bogdanova VS
    Dokl Biol Sci; 2011; 441():396-9. PubMed ID: 22227690
    [No Abstract]   [Full Text] [Related]  

  • 9. A cytoplasmic dynein heavy chain is required for oscillatory nuclear movement of meiotic prophase and efficient meiotic recombination in fission yeast.
    Yamamoto A; West RR; McIntosh JR; Hiraoka Y
    J Cell Biol; 1999 Jun; 145(6):1233-49. PubMed ID: 10366596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Karyological characterization of meiosis, post-meiotic mitosis and nuclear migration in the ectomycorrhizal fungus Rhizopogon roseolus (= R. rubescens).
    Shimomura N; Sawada K; Aimi T; Maekawa N; Matsumoto T
    Mycologia; 2012; 104(5):981-7. PubMed ID: 22505433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The multiple roles of Bub1 in chromosome segregation during mitosis and meiosis.
    Marchetti F; Venkatachalam S
    Cell Cycle; 2010 Jan; 9(1):58-63. PubMed ID: 20016277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutants of the microtubule motor protein, nonclaret disjunctional, affect spindle structure and chromosome movement in meiosis and mitosis.
    Hatsumi M; Endow SA
    J Cell Sci; 1992 Mar; 101 ( Pt 3)():547-59. PubMed ID: 1522143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear-cytoplasmic conflict in pea (Pisum sativum L.) is associated with nuclear and plastidic candidate genes encoding acetyl-CoA carboxylase subunits.
    Bogdanova VS; Zaytseva OO; Mglinets AV; Shatskaya NV; Kosterin OE; Vasiliev GV
    PLoS One; 2015; 10(3):e0119835. PubMed ID: 25789472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Live observation of fission yeast meiosis in recombination-deficient mutants: a study on achiasmate chromosome segregation.
    Molnar M; Bähler J; Kohli J; Hiraoka Y
    J Cell Sci; 2001 Aug; 114(Pt 15):2843-53. PubMed ID: 11683417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spore-autonomous fluorescent protein expression identifies meiotic chromosome mis-segregation as the principal cause of hybrid sterility in yeast.
    Rogers DW; McConnell E; Ono J; Greig D
    PLoS Biol; 2018 Nov; 16(11):e2005066. PubMed ID: 30419022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symmetric pollen mitosis I and suppression of pollen mitosis II prevent pollen development in Brachiaria jubata (Gramineae).
    Risso-Pascotto C; Pagliarini MS; Valle CB; Jank L
    Braz J Med Biol Res; 2005 Nov; 38(11):1603-8. PubMed ID: 16258628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Caenorhabditis elegans SCC-3 homologue is required for meiotic synapsis and for proper chromosome disjunction in mitosis and meiosis.
    Pasierbek P; Födermayr M; Jantsch V; Jantsch M; Schweizer D; Loidl J
    Exp Cell Res; 2003 Oct; 289(2):245-55. PubMed ID: 14499625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Disruption of male meiosis in the pea Pisum sativum L., caused by ms3 mutation].
    Shamina NV; Dorogova NV; Perel'man PL
    Tsitologiia; 2000; 42(4):404-11. PubMed ID: 10849936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microsporogenesis in sexual Brachiaria hybrids (Poaceae).
    Fuzinatto VA; Pagliarini MS; Valle CB
    Genet Mol Res; 2007 Oct; 6(4):1107-17. PubMed ID: 18273804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sex chromosome meiotic drive in hybrid males of the common shrew (Sorex araneus).
    Fedyk S; Bajkowska U; Chetnicki W
    Folia Biol (Krakow); 2005; 53(3-4):133-41. PubMed ID: 19058534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.