These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 19534506)

  • 1. Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer.
    Dadosh T; Sperling J; Bryant GW; Breslow R; Shegai T; Dyshel M; Haran G; Bar-Joseph I
    ACS Nano; 2009 Jul; 3(7):1988-94. PubMed ID: 19534506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discriminating nanoparticle dimers from higher order aggregates through wavelength-dependent SERS orientational imaging.
    Stranahan SM; Titus EJ; Willets KA
    ACS Nano; 2012 Feb; 6(2):1806-13. PubMed ID: 22273064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chitosan-coated anisotropic silver nanoparticles as a SERS substrate for single-molecule detection.
    Potara M; Baia M; Farcau C; Astilean S
    Nanotechnology; 2012 Feb; 23(5):055501. PubMed ID: 22236478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Nanoparticle Composition on the Surface-Enhanced Raman Scattering Performance of Plasmonic DNA Origami Nanoantennas.
    Kanehira Y; Tapio K; Wegner G; Kogikoski S; RĂ¼stig S; Prietzel C; Busch K; Bald I
    ACS Nano; 2023 Nov; 17(21):21227-21239. PubMed ID: 37847540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates.
    Itoh T; Yoshikawa H; Yoshida K; Biju V; Ishikawa M
    J Chem Phys; 2009 Jun; 130(21):214706. PubMed ID: 19508086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement.
    Sztainbuch IW
    J Chem Phys; 2006 Sep; 125(12):124707. PubMed ID: 17014200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [FTIR, FT-Raman and surface enhanced Raman study of shikimic acid].
    Yu DN; Zhou GM; Li S; Yang DC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jul; 28(7):1559-63. PubMed ID: 18844160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy.
    Wustholz KL; Henry AI; McMahon JM; Freeman RG; Valley N; Piotti ME; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2010 Aug; 132(31):10903-10. PubMed ID: 20681724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering.
    Daniels JK; Chumanov G
    J Phys Chem B; 2005 Sep; 109(38):17936-42. PubMed ID: 16853302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SERS of semiconducting nanoparticles (TiO(2) hybrid composites).
    Musumeci A; Gosztola D; Schiller T; Dimitrijevic NM; Mujica V; Martin D; Rajh T
    J Am Chem Soc; 2009 May; 131(17):6040-1. PubMed ID: 19364105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A unified view of surface-enhanced Raman scattering.
    Lombardi JR; Birke RL
    Acc Chem Res; 2009 Jun; 42(6):734-42. PubMed ID: 19361212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced Raman scattering system of sample molecules in silver-modified silver film.
    Niu Z; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Mar; 66(3):712-6. PubMed ID: 16876472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal.
    Saha A; Palmal S; Jana NR
    Nanoscale; 2012 Oct; 4(20):6649-57. PubMed ID: 22992658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman spectroelectrochemistry of molecules within individual electromagnetic hot spots.
    Shegai T; Vaskevich A; Rubinstein I; Haran G
    J Am Chem Soc; 2009 Oct; 131(40):14390-8. PubMed ID: 19807184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS.
    Mulvihill MJ; Ling XY; Henzie J; Yang P
    J Am Chem Soc; 2010 Jan; 132(1):268-74. PubMed ID: 20000421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the surface enhanced raman scattering (SERS) of bacteria.
    Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD
    J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.