BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19534536)

  • 1. Differentiation in fatty acid profiles of pigmented and nonpigmented Aurantiochytrium isolated from Hong Kong mangroves.
    Fan KW; Jiang Y; Ho LT; Chen F
    J Agric Food Chem; 2009 Jul; 57(14):6334-41. PubMed ID: 19534536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening and characterization of squalene-producing thraustochytrids from Hong Kong mangroves.
    Li Q; Chen GQ; Fan KW; Lu FP; Aki T; Jiang Y
    J Agric Food Chem; 2009 May; 57(10):4267-72. PubMed ID: 19371138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acid profiles in pigmented and non-pigmented strains of S. marcescens.
    Pizzimenti FC; Nostro A; Marino A; Villari A; Verzera A; Trozzi A; Alonzo V
    New Microbiol; 1999 Apr; 22(2):91-8. PubMed ID: 10322607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid characterization of mangrove thraustochytrid--Schizochytrium mangrovei.
    Fan KW; Jiang Y; Faan YW; Chen F
    J Agric Food Chem; 2007 Apr; 55(8):2906-10. PubMed ID: 17381126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field observations on correlation of fatty acid profiles between suspended particulate matter and green-lipped mussels in subtropical waters of Hong Kong.
    Wong WH; Gao QF; Cheung SG; Shin PK
    Mar Pollut Bull; 2008; 57(6-12):662-71. PubMed ID: 18289610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei.
    Jiang Y; Fan KW; Wong RT; Chen F
    J Agric Food Chem; 2004 Mar; 52(5):1196-200. PubMed ID: 14995120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils.
    Lee Chang KJ; Dunstan GA; Abell GC; Clementson LA; Blackburn SI; Nichols PD; Koutoulis A
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2215-31. PubMed ID: 22252264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High cell density cultivation of a novel Aurantiochytrium sp. strain TC 20 in a fed-batch system using glycerol to produce feedstock for biodiesel and omega-3 oils.
    Lee Chang KJ; Dumsday G; Nichols PD; Dunstan GA; Blackburn SI; Koutoulis A
    Appl Microbiol Biotechnol; 2013 Aug; 97(15):6907-18. PubMed ID: 23674153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation.
    Jakobsen AN; Aasen IM; Josefsen KD; Strøm AR
    Appl Microbiol Biotechnol; 2008 Aug; 80(2):297-306. PubMed ID: 18560831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Influence of different types of ionizing radiation on fatty acid profiles of cell lipids in microscopic fungi with radioadaptive properties].
    Tuhaĭ TI; Buzarova OI; Zheltonozhz'kyĭ VA; Sadovnykov LV
    Mikrobiol Z; 2011; 73(2):26-32. PubMed ID: 21598656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acid production of thraustochytrids from Saudi Arabian mangroves.
    Abdel-Wahab MA; El-Samawaty AEMA; Elgorban AM; Bahkali AH
    Saudi J Biol Sci; 2021 Jan; 28(1):855-864. PubMed ID: 33424376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different impacts of short-chain fatty acids on saturated and polyunsaturated fatty acid biosynthesis in Aurantiochytrium sp. SD116.
    Song X; Tan Y; Liu Y; Zhang J; Liu G; Feng Y; Cui Q
    J Agric Food Chem; 2013 Oct; 61(41):9876-81. PubMed ID: 24053543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of fast-growing thraustochytrids and seasonal variation on the fatty acid composition of thraustochytrids from mangrove regions of Navi Mumbai, India.
    Bagul VP; Annapure US
    J Environ Manage; 2021 Jul; 290():112597. PubMed ID: 33878627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyunsaturated fatty acids (PUFAs) content of the fungus Mortierella alpina isolated from soil.
    Ho SY; Jiang Y; Chen F
    J Agric Food Chem; 2007 May; 55(10):3960-6. PubMed ID: 17439233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatty acid profile of table olives and its multivariate characterization using unsupervised (PCA) and supervised (DA) chemometrics.
    López A; Montaño A; García P; Garrido A
    J Agric Food Chem; 2006 Sep; 54(18):6747-53. PubMed ID: 16939335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioconversion of waste acid oil to docosahexaenoic acid by integration of "ex novo'' and "de novo'' fermentation in Aurantiochytrium limacinum.
    Laddha H; Pawar PR; Prakash G
    Bioresour Technol; 2021 Jul; 332():125062. PubMed ID: 33839510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid.
    Huang TY; Lu WC; Chu IM
    Bioresour Technol; 2012 Nov; 123():8-14. PubMed ID: 22929740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient production of triacylglycerols rich in docosahexaenoic acid (DHA) by osmo-heterotrophic marine protists.
    Liu Y; Tang J; Li J; Daroch M; Cheng JJ
    Appl Microbiol Biotechnol; 2014 Dec; 98(23):9643-52. PubMed ID: 25186147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatty acid, compatible solute and pigment composition of obligately chemolithoautotrophic alkaliphilic sulfur-oxidizing bacteria from soda lakes.
    Banciu H; Sorokin DY; Rijpstra WI; Sinninghe Damsté JS; Galinski EA; Takaichi S; Muyzer G; Kuenen JG
    FEMS Microbiol Lett; 2005 Feb; 243(1):181-7. PubMed ID: 15668017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Aurantiochytrium sp. L3W for food-processing wastewater treatment in combination with polyunsaturated fatty acids production for fish aquaculture.
    Humaidah N; Nakai S; Nishijima W; Gotoh T; Furuta M
    Sci Total Environ; 2020 Nov; 743():140735. PubMed ID: 32679499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.